题目内容
【题目】某射手每次射击击中目标的概率是
,且各次射击的结果互不影响,假设这名射手射击3次.
(1)求恰有2次击中目标的概率;
(2)现在对射手的3次射击进行计分:每击中目标1次得1分,未击中目标得0分;若仅有2次连续击中,则额外加1分;若3次全击中,则额外加3分.记
为射手射击3次后的总得分,求
的概率分布列与数学期望
.
【答案】(1)
;(2)![]()
【解析】
(1)先记“射手射击3次,恰有2次击中目标”为事件
,根据题中条件,即可得出结果;
(2)先由题意确定
的可能取值,求出对应概率,进而可得出分布列,再由分布列求出期望即可.
(1)记“射手射击3次,恰有2次击中目标”为事件
,
因为射手每次射击击中目标的概率是
,
所以
;
(2)由题意可得,
的可能取值为
,
;
;
,
,
;
所以
的分布列如下:
|
|
|
|
|
|
|
|
|
|
|
|
因此,
.
【题目】2012年12月18日,作为全国首批开展空气质量新标准监测的74个城市之一,郑州市正式发布
数据.资料表明,近几年来,郑州市雾霾治理取得了很大成效,空气质量与前几年相比得到了很大改善.郑州市设有9个监测站点监测空气质量指数(
),其中在轻度污染区、中度污染区、重度污染区分别设有2,5,2个监测站点,以9个站点测得的
的平均值为依据,播报我市的空气质量.
(Ⅰ)若某日播报的
为118,已知轻度污染区
的平均值为74,中度污染区
的平均值为114,求重度污染区
的平均值;
(Ⅱ)如图是2018年11月的30天中
的分布,11月份仅有一天
在
内.
组数 | 分组 | 天数 |
第一组 |
| 3 |
第二组 |
| 4 |
第三组 |
| 4 |
第四组 |
| 6 |
第五组 |
| 5 |
第六组 |
| 4 |
第七组 |
| 3 |
第八组 |
| 1 |
①郑州市某中学利用每周日的时间进行社会实践活动,以公布的
为标准,如果
小于180,则去进行社会实践活动.以统计数据中的频率为概率,求该校周日进行社会实践活动的概率;
②在“创建文明城市”活动中,验收小组把郑州市的空气质量作为一个评价指标,从当月的空气质量监测数据中抽取3天的数据进行评价,设抽取到
不小于180的天数为
,求
的分布列及数学期望.