题目内容

若x>0,y>0,且x+y=5,则lgx+lgy的最大值是(  )
A、lg5
B、2-4lg2
C、lg
5
2
D、不存在
分析:由已知条件,可以得到xy≤(
x+y
2
)
2
=
25
4
,从而得出lg(xy)的最大值.
解答:解:∵x>0,y>0,x+y=5∴xy≤(
x+y
2
)2=
25
4

lgx+lgy=lg(xy)≤lg(
x+y
2
)2=lg
25
4
=lg
100
16
=2-4lg2

故选B.
点评:本题主要利用均值不等式求解对数函数的最值问题,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网