题目内容
20.设点P在直线y=2x+1上运动,过点P作圆C:(x-2)2+y2=1的切线,切点为A,则△CAP面积的最小值是1.分析 由圆的方程为求得圆心C(1,1)、半径r为:1,由“若四边形面积最小,则圆心与点P的距离最小时,即距离为圆心到直线的距离时,切线长PA,PB最小”,最后将四边形转化为两个直角三角形面积求解.
解答 解:∵圆C:(x-2)2+y2=1,∴圆心C(2,0)、半径r为:1,
根据题意,若三角形面积最小,
当圆心与点P的距离最小时,距离为圆心到直线的距离时,
切线长PA最小,
圆心到直线的距离为d=$\frac{|4+1|}{\sqrt{5}}$=$\sqrt{5}$,
∴|PA|=$\sqrt{5-1}$=2,
∴S△PAC=$\frac{1}{2}$|PA|r=$\frac{1}{2}×2×1$=1.
故答案为:1.
点评 本题主要考查直线与圆的位置关系,主要涉及了构造四边形及其面积的求法,同时,还考查了转化思想.此题属中档题.
练习册系列答案
相关题目
15.已知$cos(\frac{π}{3}+α)=\frac{1}{3}$,则$sin(\frac{5}{6}π+α)$=( )
| A. | .$\frac{1}{3}$ | B. | $-\frac{1}{3}$ | C. | .$\frac{{2\sqrt{2}}}{3}$ | D. | .$-\frac{{2\sqrt{2}}}{3}$ |
5.
某特色餐馆开通了美团外卖服务,在一周内的某特色外卖份数x(份)与收入y(元)之间有如下的对应数据:
(1)画出散点图;
(2)求回归直线方程;
(3)据此估计外卖份数为12份时,收入为多少元.
注:参考公式:$\widehatb=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2}-n{{(\overline x)}^2}}}=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y})}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}$,$\widehata$=$\overline y-\widehatb\overline x$;
参考数据:$\sum_{i=1}^5{x_1^2}=145,\sum_{i=1}^5{y_1^2}=13500,\sum_{i=1}^5{{x_i}{y_i}}=1380$.
| 外卖份数x(份) | 2 | 4 | 5 | 6 | 8 |
| 收入y(元) | 30 | 40 | 60 | 50 | 70 |
(2)求回归直线方程;
(3)据此估计外卖份数为12份时,收入为多少元.
注:参考公式:$\widehatb=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2}-n{{(\overline x)}^2}}}=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y})}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}$,$\widehata$=$\overline y-\widehatb\overline x$;
参考数据:$\sum_{i=1}^5{x_1^2}=145,\sum_{i=1}^5{y_1^2}=13500,\sum_{i=1}^5{{x_i}{y_i}}=1380$.