题目内容
已知
=(sinA,cosA),
=(cosC,sinC),若
•
=sin2B,
,
的夹角为θ,且A、B、C为三角形ABC的内角.
求(1)∠B
(2)cos
.
| a |
| b |
| 3 |
| a |
| b |
| a |
| b |
求(1)∠B
(2)cos
| θ |
| 2 |
(1)
•
=sinAcosC+cosAsinC=sin(A+C)=sin(π-B)=sinB.
∵
•
=sin2B,
∴
sinB=2sinBcosB,
∵sinB≠0,
∴cosB=
.
∵B∈(0,π),
∴B=
.
(2)∵|
|=
=1,|
|=
=1.
∴cosθ=
=
=
,
又∵θ∈[0,π],
∴θ=
.
∴cos
=cos
=
.
| a |
| b |
∵
| 3 |
| a |
| b |
∴
| 3 |
∵sinB≠0,
∴cosB=
| ||
| 2 |
∵B∈(0,π),
∴B=
| π |
| 6 |
(2)∵|
| a |
| sin2A+cos2A |
| b |
| cos2C+sin2C |
∴cosθ=
| ||||
|
|
| sinB |
| 1×1 |
| 1 |
| 2 |
又∵θ∈[0,π],
∴θ=
| π |
| 3 |
∴cos
| θ |
| 2 |
| π |
| 6 |
| ||
| 2 |
练习册系列答案
相关题目