题目内容
【题目】已知数列{an}满足a1=1,an=
(n∈N*,n≥2),数列{bn}满足关系式bn=
(n∈N*).
(1)求证:数列{bn}为等差数列;
(2)求数列{an}的通项公式.
【答案】(1)见证明;(2) an=
.
【解析】
(1)通过对an=
(n∈N*,n≥2)两边同时取倒数、整理得
,进而可得数列{bn}是以1为首项,2为公差的等差数列.
(2)通过(1)可知bn=2n-1,进而求倒数可得结论.
(1)证明:∵bn=
,且an=
,
∴
,
∴
.
又b1=
=1,∴数列{bn}是以1为首项,2为公差的等差数列.
(2)解:由(1)知数列{bn}的通项公式为bn=1+(n-1)×2=2n-1,
又bn=
,∴an=
.∴数列{an}的通项公式为an=
.
【题目】阿基米德是古希腊伟大的哲学家、数学家、物理学家,对几何学、力学等学科作出过卓越贡献.为调查中学生对这一伟大科学家的了解程度,某调查小组随机抽取了某市的100名高中生,请他们列举阿基米德的成就,把能列举阿基米德成就不少于3项的称为“比较了解”,少于三项的称为“不太了解”.他们的调查结果如下:
0项 | 1项 | 2项 | 3项 | 4项 | 5项 | 5项以上 | |
理科生(人) | 1 | 10 | 17 | 14 | 14 | 10 | 4 |
文科生(人) | 0 | 8 | 10 | 6 | 3 | 2 | 1 |
(1)完成如下
列联表,并判断是否有
的把握认为,了解阿基米德与选择文理科有关?
比较了解 | 不太了解 | 合计 | |
理科生 | |||
文科生 | |||
合计 |
(2)在抽取的100名高中生中,按照文理科采用分层抽样的方法抽取10人的样本.
(i)求抽取的文科生和理科生的人数;
(ii)从10人的样本中随机抽取3人,用
表示这3人中文科生的人数,求
的分布列和数学期望.
参考数据:
| 0.100 | 0.050 | 0.010 | 0.001 |
| 2.706 | 3.841 | 6.635 | 10.828 |
,
.
【题目】2020年1月22日,国新办发布消息:新型冠状病毒来源于武汉一家海鲜市场非法销售的野生动.专家通过全基因组比对发现此病毒与2003年的非典冠状病毒以及此后的中东呼吸综合征冠状病毒,分别达到70%和40%的序列相似性.这种新型冠状病毒对人们的健康生命带来了严重威胁因此,某生物疫苗研究所加紧对新型冠状病毒疫苗进行实验,并将某一型号疫苗用在动物小白鼠身上进行科研和临床实验,得到统计数据如下:
未感染病毒 | 感染病毒 | 总计 | |
未注射疫苗 | 20 |
|
|
注射疫苗 | 30 |
|
|
总计 | 50 | 50 | 100 |
现从所有试验小白鼠中任取一只,取到“注射疫苗”小白鼠的概率为
.
(1)求
列联表中的数据
,
,
,
的值;
(2)能否有99.9%把握认为注射此种疫苗对预防新型冠状病毒有效?
附:
.
| 0.05 | 0.01 | 0.005 | 0.001 |
| 3.841 | 6.635 | 7.879 | 10.828 |