ÌâÄ¿ÄÚÈÝ
14£®ÒÑÖªº¯Êýf£¨x£©=$\left\{\begin{array}{l}{£¨\frac{1}{2}£©^{x}£¬x£¼0}\\{x-2£¬x¡Ý0}\end{array}\right.$£¬Èôf[f£¨-2£©]=a£¬ÊµÊýx£¬yÂú×ãÔ¼ÊøÌõ¼þ$\left\{\begin{array}{l}{x-a¡Ý0}\\{x+y¡Ü6}\\{2x-y¡Ü6}\end{array}\right.$£¬ÔòÄ¿±êº¯Êýz=$\frac{3x+4y+10}{x+2}$µÄ×î´óֵΪ8£®·ÖÎö ¸ù¾Ý·Ö¶Îº¯ÊýµÄ±í´ïʽ£¬Çó³öaµÄÖµ£¬×÷³ö²»µÈʽ×é¶ÔÓ¦µÄÆ½ÃæÇøÓò£¬ÀûÓ÷Öʽº¯ÊýµÄÐÔÖʽáºÏÖ±ÏßбÂʵĹ«Ê½½øÐÐÇó½â¼´¿É£®
½â´ð ½â£ºf£¨-2£©=$£¨\frac{1}{2}£©^{-2}$=4£¬
Ôòa=f[f£¨-2£©]=f£¨4£©=4-2=2£¬![]()
ÔòÔ¼ÊøÌõ¼þΪ$\left\{\begin{array}{l}{x-2¡Ý0}\\{x+y¡Ü6}\\{2x-y¡Ü6}\end{array}\right.$£¬
×÷³ö²»µÈʽ×é¶ÔÓ¦µÄÆ½ÃæÇøÓòÈçͼ£º
z=$\frac{3x+4y+10}{x+2}$=$\frac{3£¨x+2£©+4y+4}{x+2}$=3+4•$\frac{y+1}{x+2}$£¬
Éèk=$\frac{y+1}{x+2}$£¬
ÔòkµÄ¼¸ºÎÒâÒåÊÇÇøÓòÄڵĵ㵽¶¨µãD£¨-2£¬-1£©µÄбÂÊ£¬
Ôòz=3+4k£¬
ÓÉͼÏóÖªADµÄбÂÊ×î´ó£¬
ÓÉ$\left\{\begin{array}{l}{x=2}\\{x+y=6}\end{array}\right.$µÃ$\left\{\begin{array}{l}{x=2}\\{y=4}\end{array}\right.$£¬¼´A£¨2£¬4£©£¬
´Ëʱk=$\frac{4+1}{2+2}$=$\frac{5}{4}$£¬
Ôòz=3+4¡Á$\frac{5}{4}$=3+4=8£¬
¼´Ä¿±êº¯Êýz=$\frac{3x+4y+10}{x+2}$µÄ×î´óֵΪ8£¬
¹Ê´ð°¸Îª£º8
µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÏßÐԹ滮µÄÓ¦Ó㬸ù¾ÝÌõ¼þÇó³öaµÄÖµ£¬ÀûÓ÷ÖʽµÄÓ¦ÓÃת»¯ÎªÖ±ÏßбÂÊÎÊÌâÊǽâ¾ö±¾ÌâµÄ¹Ø¼ü£®
| A£® | ¹ØÓÚxÖá¶Ô³Æ | B£® | ¹ØÓÚyÖá¶Ô³Æ | C£® | ¹ØÓÚÔµã¶Ô³Æ | D£® | ¹ØÓÚy=x¶Ô³Æ |
| A£® | -1 | B£® | -1»ò$\sqrt{2}$ | C£® | $\sqrt{2}$ | D£® | -1»ò$-\sqrt{2}$ |
| A£® | [$\frac{3-\sqrt{6}}{6}$£¬$\frac{3+\sqrt{6}}{6}$] | B£® | [$\frac{3-\sqrt{6}}{6}$£¬1] | C£® | [$\frac{\sqrt{2}}{2}$-$\frac{\sqrt{3}}{6}$£¬$\frac{\sqrt{2}}{2}$+$\frac{\sqrt{3}}{6}$] | D£® | [$\frac{\sqrt{2}}{2}$-$\frac{\sqrt{3}}{6}$£¬1] |