题目内容

7.已知正方体ABCD-A1B1C1D1中,AB=1,E是BC中点,求异面直线DE与A1C所成角的大小.

分析 以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,利用向量法能求出异面直线DE与A1C所成角的大小.

解答 解正方体ABCD-A1B1C1D1中,AB=1,E是BC中点,
以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,
D(0,0,0),E($\frac{1}{2}$,1,0),A1(1,0,1),C(0,1,0),
$\overrightarrow{DE}$=($\frac{1}{2},1,0$),$\overrightarrow{{A}_{1}C}$=(-1,1,-1),
设异面直线DE与A1C所成角为θ,
则cosθ=$\frac{|\overrightarrow{DE}•\overrightarrow{{A}_{1}C}|}{|\overrightarrow{DE}|•|\overrightarrow{{A}_{1}C}|}$=$\frac{\frac{1}{2}}{\sqrt{\frac{5}{4}}•\sqrt{3}}$=$\frac{\sqrt{15}}{15}$,
∴θ=arccos$\frac{\sqrt{15}}{15}$.
∴异面直线DE与A1C所成角的大小为arccos$\frac{\sqrt{15}}{15}$.

点评 本题考查异面直线所成角的求法,是基础题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网