题目内容
3.已知100件产品中有10件次品,从中任取3件,则任意取出的3件产品中次品数的数学期望为0.3,方差为0.2645.分析 因为取出的3件产品中次品数可能为0,1,2,3,那么利用古典概型的概率公式可知概率值得到分布列,从而得到期望值和方差.
解答 解:100件产品中有10件次品,从中任取3件,
则任意取出的3件产品中次品数X的可能取值为0,1,2,3,
P(X=0)=$\frac{{C}_{90}^{3}}{{C}_{100}^{3}}$,
P(X=1)=$\frac{{C}_{90}^{1}{C}_{10}^{1}}{{C}_{100}^{3}}$
P(X=2)=$\frac{{C}_{90}^{1}{C}_{10}^{2}}{{C}_{100}^{3}}$
P(X=3)=$\frac{{C}_{90}^{0}{C}_{10}^{3}}{{C}_{100}^{3}}$,
∴EX=0×$\frac{{C}_{90}^{3}}{{C}_{100}^{3}}$+1×$\frac{{C}_{90}^{1}{C}_{10}^{1}}{{C}_{100}^{3}}$+2×$\frac{{C}_{90}^{1}{C}_{10}^{2}}{{C}_{100}^{3}}$+3×$\frac{{C}_{90}^{0}{C}_{10}^{3}}{{C}_{100}^{3}}$=0.3,
DX=(0-0.3)2×$\frac{{C}_{90}^{3}}{{C}_{100}^{3}}$+(1-0.3)2×$\frac{{C}_{90}^{1}{C}_{10}^{1}}{{C}_{100}^{3}}$+(2-0.3)2×$\frac{{C}_{90}^{1}{C}_{10}^{2}}{{C}_{100}^{3}}$+(3-0.3)2×$\frac{{C}_{90}^{0}{C}_{10}^{3}}{{C}_{100}^{3}}$=0.2645.
故答案为:0.3,0.2645.
点评 本题考查离散型随机变量的分布列和数学期望的求法,是中档题,解题时要认真审题,在历年高考中都是必考题型之一.
| A. | (-∞,-1) | B. | (0,1) | C. | (1,2) | D. | (-1,+∞) |
| X | 0 | 1 | 2 | 3 |
| P | 0.1 | a | b | 0.1 |
| A. | 4 | B. | 7 | C. | 8 | D. | 16 |
| A. | (2,3] | B. | [3,4) | C. | (4,5] | D. | [5,6) |