题目内容

2.△ABC,内角A,B,C所对的边分别是a,b,c,且$\frac{acosB+bcosA}{c}=2cosC$.
(1)求角C的大小;
(2)若${S_{△ABC}}=2\sqrt{3}$,a=4,求c.

分析 (1)根据正弦定理可得和两角和正弦公式即可求出答案,
(2)根据三角形的面积公式和余弦定理即可求出.

解答 解:(1)∵$\frac{acosB+bcosA}{c}=2cosC$
∴acosB+bcosA=2ccosC,
由正弦定理得:sinAcosB+sinBcosA=2sinCcosC,
即sin(A+B)=2sinCcosC,
∵0<c<π,
∴sinC>0,
∴$cosC=\frac{1}{2}$,
∴$c=\frac{π}{3}$.
(2)由(1)知$C=\frac{π}{3}$,
∵${S_{△ABC}}=2\sqrt{3}$,
∴$\frac{1}{2}$ab×$\frac{\sqrt{3}}{2}$=$\sqrt{3}$b=2$\sqrt{3}$,
解得b=2.
∴${c^2}={a^2}+{b^2}-2ab×\frac{1}{2}=12$,
∴$c=2\sqrt{3}$.

点评 本题考查了正弦定理和余弦定理和三角形的面积公式以及两角和的正弦公式,考查了学生的运算能力和转化能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网