题目内容

15.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$满足$\overrightarrow{a}$⊥($\overrightarrow{a}$-$\overrightarrow{b}$),且|$\overrightarrow{a}$|=3,|$\overrightarrow{b}$|=2$\sqrt{3}$,则$\overrightarrow{a}$与$\overrightarrow{b}$ 的夹角为$\frac{π}{6}$.

分析 根据平面向量数量积的定义与夹角公式,计算即可.

解答 解:向量$\overrightarrow{a}$,$\overrightarrow{b}$满足$\overrightarrow{a}$⊥($\overrightarrow{a}$-$\overrightarrow{b}$),且|$\overrightarrow{a}$|=3,|$\overrightarrow{b}$|=2$\sqrt{3}$,
∴$\overrightarrow{a}$•($\overrightarrow{a}$-$\overrightarrow{b}$)=${\overrightarrow{a}}^{2}$-$\overrightarrow{a}$•$\overrightarrow{b}$=0;
设$\overrightarrow{a}$与$\overrightarrow{b}$ 的夹角为θ,
则32-3×2$\sqrt{3}$×cosθ=0,
解得cosθ=$\frac{\sqrt{3}}{2}$;
又θ∈[0,π],
∴θ=$\frac{π}{6}$.
故答案为:$\frac{π}{6}$.

点评 本题考查了平面向量数量积的定义与夹角公式的应用问题,是基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网