题目内容

20.若双曲线与椭圆4x2+y2=64有公共的焦点,它们的离心率互为倒数,则双曲线的方程是(  )
A.3y2-x2=36B.x2-3y2=36C.3x2-y2=36D.y2-3x2=36

分析 求出椭圆焦点为(0,±4$\sqrt{3}$),离心率为$\frac{\sqrt{3}}{2}$,利用双曲线与椭圆4x2+y2=64有公共的焦点,它们的离心率互为倒数,即可求双曲线方程.

解答 解:椭圆4x2+y2=64,即$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{64}$=1,
焦点为(0,±4$\sqrt{3}$),离心率为$\frac{\sqrt{3}}{2}$,
所以双曲线的焦点在y轴上,c=4$\sqrt{3}$,e=$\frac{2}{\sqrt{3}}$,
所以a=6,b=2$\sqrt{3}$,
所以双曲线方程为$\frac{{y}^{2}}{36}-\frac{{x}^{2}}{12}$=1,即y2-3x2=36,
故选:D.

点评 本题考查椭圆、双曲线方程与性质,考查学生的计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网