题目内容

19.集合A={x|3x+2≤-x2},B={x|(3-x)(x+2)≥0},集合N={x||x|≤a,a>0}
(1)若M=A∪B且M∩N=N,求实数a的取值范围;
(2)若M=A∪B且M∪N=N,求实数a的取值范围.

分析 化简集合A,B,N,利用集合的关系建立不等式,即可求实数a的取值范围.

解答 解:(1)集合A:x2+3x+2≤0,(x+2)(x+1)≤0得-2≤x≤-1.
集合B:(3-x)(x+2)≥0,所以(x+2)(x-3)≤0得:-2≤x≤3.
M=A∪B,所以M={x|-2≤x≤3},
N={x|-a≤x≤a,a>0},
∵M∩N=N,
∴N⊆M,
∴$\left\{\begin{array}{l}{-a≥-2}\\{a≤3}\end{array}\right.$,∴0<a≤2;
(2)∵M∪N=N,
∴M⊆N,
∴$\left\{\begin{array}{l}{-a≤-2}\\{a≥3}\end{array}\right.$,∴a≥3.

点评 本题考查集合的运算与关系,考查学生的计算能力,正确转化是关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网