题目内容
12.设z=$\frac{1+i}{i}$(i为虚数单位),则|z|=( )| A. | $\frac{\sqrt{2}}{2}$ | B. | $\sqrt{2}$ | C. | $\frac{1}{2}$ | D. | 2 |
分析 利用复数的运算法则、模的计算公式即可得出.
解答 解:z=$\frac{1+i}{i}$=$\frac{-i(1+i)}{-i•i}$=1-i,
则|z|=$\sqrt{2}$.
故选:B.
点评 本题考查了复数的运算法则、模的计算公式,考查了推理能力与计算能力,属于基础题.
练习册系列答案
相关题目
20.已知函数$f(x)=2{sin^2}({x-\frac{π}{6}})-1$(x∈R),则下列结论正确的是( )
| A. | 函数f(x)是最小正周期为π的奇函数 | B. | 函数f(x)的图象关于直线$x=\frac{π}{12}$对称 | ||
| C. | 函数f(x)在区间$[{\frac{π}{6},\frac{5π}{12}}]$上是增函数 | D. | 函数f(x)的图象关于点$({-\frac{π}{12},0})$对称 |
4.已知函数f(x)=lnx-a(x-1),a∈R.
(Ⅰ)讨论f(x)的单调性;
(Ⅱ)当x>0时,f(x)≤0恒成立;
(1)求a的值;
(2)若f(x1)=f(x2),x1≠x2,求证:x1+x2>2.
(Ⅰ)讨论f(x)的单调性;
(Ⅱ)当x>0时,f(x)≤0恒成立;
(1)求a的值;
(2)若f(x1)=f(x2),x1≠x2,求证:x1+x2>2.
1.圆x2+y2=1与圆(x+1)2+(y+4)2=16的位置关系是( )
| A. | 相外切 | B. | 相内切 | C. | 相交 | D. | 相离 |