题目内容

某班班会准备从包括甲、乙在内的7名同学中选出4名代表发言,要求甲、乙两人中至少有一人参加,若甲、乙同时参加,则他们发言时顺序不能相邻,则不同的发言顺序种数为(  )
A、720B、600
C、520D、360
考点:排列、组合的实际应用
专题:应用题,排列组合
分析:根据题意,分2种情况讨论,①只有甲乙其中一人参加,②甲乙两人都参加,由排列、组合计算可得其符合条件的情况数目,由加法原理计算可得答案.
解答: 解:根据题意,分2种情况讨论,
若只有甲乙其中一人参加,有C21•C53•A44=480种情况;
若甲乙两人都参加,有C22•C52•A44=240种情况,
其中甲乙相邻的有C22•C52•A33•A22=120种情况;
则不同的发言顺序种数480+240-120=600种,
故选:B.
点评:本题考查组合的应用,要灵活运用各种特殊方法,如捆绑法、插空法.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网