题目内容
设a为实数,函数f(x)=ex-2x+2a,x∈R.
(Ⅰ)求f(x)的单调区间与极值;
(Ⅱ)求证:当a>ln2-1且x>0时,ex>x2-2ax+1.
(Ⅰ)求f(x)的单调区间与极值;
(Ⅱ)求证:当a>ln2-1且x>0时,ex>x2-2ax+1.
考点:利用导数研究函数的极值,利用导数研究函数的单调性,利用导数求闭区间上函数的最值
专题:导数的综合应用
分析:(Ⅰ)由f(x)=ex-2x+2a,x∈R,知f′(x)=ex-2,x∈R.令f′(x)=0,得x=ln2.列表讨论能求出f(x)的单调区间区间及极值.
(Ⅱ)设g(x)=ex-x2+2ax-1,x∈R,于是g′(x)=ex-2x+2a,x∈R.由(1)知当a>ln2-1时,g′(x)最小值为g′(ln2)=2(1-ln2+a)>0.于是对任意x∈R,都有g′(x)>0,所以g(x)在R内单调递增.由此能够证明ex>x2-2ax+1.
(Ⅱ)设g(x)=ex-x2+2ax-1,x∈R,于是g′(x)=ex-2x+2a,x∈R.由(1)知当a>ln2-1时,g′(x)最小值为g′(ln2)=2(1-ln2+a)>0.于是对任意x∈R,都有g′(x)>0,所以g(x)在R内单调递增.由此能够证明ex>x2-2ax+1.
解答:
(Ⅰ)解:∵f(x)=ex-2x+2a,x∈R,
∴f′(x)=ex-2,x∈R.
令f′(x)=0,得x=ln2.
于是当x变化时,f′(x),f(x)的变化情况如下表:
故f(x)的单调递减区间是(-∞,ln2),
单调递增区间是(ln2,+∞),
f(x)在x=ln2处取得极小值,
极小值为f(ln2)=eln2-2ln2+2a=2(1-ln2+a),无极大值.
(Ⅱ)证明:设g(x)=ex-x2+2ax-1,x∈R,
于是g′(x)=ex-2x+2a,x∈R.
由(1)知当a>ln2-1时,
g′(x)最小值为g′(ln2)=2(1-ln2+a)>0.
于是对任意x∈R,都有g′(x)>0,所以g(x)在R内单调递增.
于是当a>ln2-1时,对任意x∈(0,+∞),都有g(x)>g(0).
而g(0)=0,从而对任意x∈(0,+∞),g(x)>0.
即ex-x2+2ax-1>0,
故ex>x2-2ax+1.
∴f′(x)=ex-2,x∈R.
令f′(x)=0,得x=ln2.
于是当x变化时,f′(x),f(x)的变化情况如下表:
| x | (-∞,ln2) | ln2 | (ln2,+∞) |
| f′(x) | - | 0 | + |
| f(x) | 单调递减? | 2(1-ln2+a) | 单调递增? |
单调递增区间是(ln2,+∞),
f(x)在x=ln2处取得极小值,
极小值为f(ln2)=eln2-2ln2+2a=2(1-ln2+a),无极大值.
(Ⅱ)证明:设g(x)=ex-x2+2ax-1,x∈R,
于是g′(x)=ex-2x+2a,x∈R.
由(1)知当a>ln2-1时,
g′(x)最小值为g′(ln2)=2(1-ln2+a)>0.
于是对任意x∈R,都有g′(x)>0,所以g(x)在R内单调递增.
于是当a>ln2-1时,对任意x∈(0,+∞),都有g(x)>g(0).
而g(0)=0,从而对任意x∈(0,+∞),g(x)>0.
即ex-x2+2ax-1>0,
故ex>x2-2ax+1.
点评:本题考查函数的单调区间及极值的求法和不等式的证明,具体涉及到导数的性质、函数增减区间的判断、极值的计算和不等式性质的应用.解题时要认真审题,仔细解答.
练习册系列答案
相关题目
一个算法的程序框图如图,则其输出结果是( )

| A、0 | ||||
B、
| ||||
C、
| ||||
D、
|
已知α∈(
,π),且tan(α+
)=-
,则sinα+cosα的值是( )
| π |
| 2 |
| π |
| 4 |
| 1 |
| 7 |
A、
| ||
B、-
| ||
C、-
| ||
D、-
|