题目内容
在
上可导的函数
的图形如图所示,则关于
的不等式
的解集为( )![]()
| A. | B. |
| C. | D. |
A
解析试题分析:由图知,当x<-1时,函数f(x)单调递增,当-1≤x≤1时,函数f(x)单调递减,当x>2时,函数f(x)单调递增,∴
>0的区间有
,
,
>0的区间有[-1,1],又不等式
表示x与
异号,∴不等式
的解集为
,故选A
考点:本题考查了导数的运用
点评:对于函数
,如果在某区间上
,那么
为该区间上的增函数;如果在某区间上
,那么
为该区间上的减函数
练习册系列答案
相关题目
已知函数
在
处取得极大值
,则
的值为( )
| A. | B.- | C.-2或一 | D.不存在 |
已知实数a,b满足
≤a≤1,
≤b≤1,则函数
有极值的概率为( )
| A. | B. | C. | D. |
设曲线
在点
处的切线与直线
平行,则实数
等于( )
| A. | B. | C. | D. |
已知
,且
,则下列不等式一定成立的是( )
| A. | B. |
| C. | D. |
已知函数
在
处有极值,则函数
的图象可能是( )![]()
![]()
![]()
![]()
| A. | B. | C. | D. |
函数
的的单调递增区间是 ( )
| A. | B. | C. | D. |
对于R上可导的任意函数f(x),且
若满足(x-1)
>0,则必有( )
| A.f(0)+f(2)<2f(1) | B.f(0)+f(2)³2f(1) |
| C.f(0)+f(2)>2f(1) | D.f(0)+f(2)³2f(1) |
如图,是函数
的导函数
的图象,则下面判断正确的是![]()
| A.在区间(-2,1)上 |
| B.在区间(1,2)上 |
| C. |
| D.当 |