题目内容

a是实数,f(x)=a-
22x+1
(x∈R)
,用定义证明:对于任意a,f(x)在R上为增函数.
分析:设两个实数数x1、x2∈R,且x1<x2,将f(x1)与f(x2)作差变形整理,再讨论得f(x1)<f(x2),由此即可得到f(x)=a-
2
2x+1
在区间(0,2)上为减函数.
解答:证明:设x1,x2∈R,x1<x2,则
f(x1)-f(x2)=(a-
2
2x1+1
)-(a-
2
2x2+1
)
-------------(2分)
=
2
2x2+1
-
2
2x1+1
=
2(2x1-2x2)
(2x1+1)(2x2+1)
,-----------------(4分)
∵指数函数y=2x在R上是增函数,且x1<x2
2x12x2,可得2x1-2x2<0,---------------------(6分)
又∵2x>0,得2x1+1>02x2+1>0,--------------(8分)
∴f(x1)-f(x2)<0即f(x1)<f(x2),
由此可得,对于任意a,f(x)在R上为增函数.----------(10分)
点评:本题通过证明一个函数在给定区间上为增函数,考查了用定义证明函数单调性的知识,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网