题目内容
13.已知集合M={x|x<0},N={x|x2-x-2<0},则M∩N=( )| A. | {x|-1<x<0} | B. | {x|-2<x<0} | C. | {x|x<2} | D. | {x|x<1} |
分析 求出N中不等式的解集确定出N,找出M与N的交集即可.
解答 解:由N中不等式变形得:(x-2)(x+1)<0,
解得:-1<x<2,即N={x|-1<x<2},
∵M={x|x<0},
∴M∩N={x|-1<x<0},
故选:A.
点评 此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.
练习册系列答案
相关题目
3.已知函数f(x)=lnx-x3与g(x)=x3-ax的图象上存在关于x轴的对称点,则a的取值范围为( )
| A. | (-∞,e) | B. | (-∞,e] | C. | (-∞,$\frac{1}{e}$) | D. | (-∞,$\frac{1}{e}$] |
4.随机变量a服从正态分布N(1,σ2),且P(0<a<1)=0.3000.已知a>0,a≠1,则函数y=ax+1-a图象不经过第二象限的概率为( )
| A. | 0.3750 | B. | 0.3000 | C. | 0.2500 | D. | 0.2000 |
8.已知e为自然对数的底数,若对任意的x∈[0,1],总存在唯一的y∈[-1,1],使得x+y2ey-a=0成立,则实数a的取值范围是( )
| A. | [1,e] | B. | $(1+\frac{1}{e},e]$ | C. | (1,e] | D. | $[1+\frac{1}{e},e]$ |