题目内容
18.设函数f(x)=alnx+bx2,若函数f(x)的图象在点(1,1)处的切线与y轴垂直,则实数a+b=-1.分析 求出函数的导数,利用函数值以及导函数值,求出a,b即可得到结果.
解答 解:函数f(x)=alnx+bx2,若函数f(x)的图象过(1,1),
可得:b=1,
f′(x)=$\frac{a}{x}$+2x,函数f(x)的图象在点(1,1)处的切线与y轴垂直,
可得a+2=0,
实数a+b=-2+1=-1.
故答案为:-1.
点评 本题考查函数的导数的应用,导数的几何意义,考查计算能力.
练习册系列答案
相关题目
9.函数f(x)=2x+3,则f(-1)=( )
| A. | 2 | B. | 1 | C. | $\frac{5}{2}$ | D. | $\frac{7}{2}$ |
6.已知数组(x1,y1),(x2,y2),…,(xn,yn)的线性回归方程是$\hat y=bx+a$,则“x0=$\frac{{{x_1}+{x_2}+…+{x_n}}}{n}$,且y0=$\frac{{{y_1}+{y_2}+…+{y_n}}}{n}$”是“(x0,y0)满足方程$\hat y=bx+a$”的( )
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
13.
由507名画师集体创作的999幅油画组合而成了世界名画《蒙娜丽莎》,某部门从参加创作的507名画师中随机抽出100名画师,得到画师年龄的频率分布表如下表所示.
(Ⅰ)求a,b的值;并补全频率分布直方图;
(Ⅱ)根据频率分布直方图估计这507名画师年龄的平均数;
(Ⅲ)在抽出的[20,25)岁的5名画师中有3名男画师,2名女画师.在这5名画师中任选两人去参加某绘画比赛,选出的恰好是一男一女的概率是多少?
(Ⅰ)求a,b的值;并补全频率分布直方图;
(Ⅱ)根据频率分布直方图估计这507名画师年龄的平均数;
(Ⅲ)在抽出的[20,25)岁的5名画师中有3名男画师,2名女画师.在这5名画师中任选两人去参加某绘画比赛,选出的恰好是一男一女的概率是多少?
| 分组(岁) | 频数 | 频率 |
| [20,25) | 5 | 0.050 |
| [25,30) | a | 0.200 |
| [30,35) | 35 | b |
| [35,40) | 30 | 0.300 |
| [40,45) | 10 | 0.100 |
| 合计 | 100 | 1.00 |
3.从数字1,2,3,4中任取两个不同的数字构成一个两位数,则这个数大于30的概率为( )
| A. | $\frac{1}{2}$ | B. | $\frac{1}{6}$ | C. | $\frac{1}{3}$ | D. | $\frac{1}{12}$ |
7.若函数f(x)=|x|+$\sqrt{a-{x^2}}-\sqrt{2}$(a>0)没有零点,则a的取值范围是( )
| A. | $(\sqrt{2},+∞)$ | B. | (2,+∞) | C. | $(0,1)∪(\sqrt{2},+∞)$ | D. | (0,1)∪(2,+∞) |