题目内容

如图,在四棱锥E-ABCD中,底面ABCD为矩形,平面ABCD⊥平面ABE,∠AEB=90°,BE=BC,F为CE的中点,求证:
(1)AE∥平面BDF;
(2)平面BDF⊥平面BCE.
考点:平面与平面垂直的判定,直线与平面平行的判定
专题:证明题,空间位置关系与距离
分析:(1)设AC∩BD=G,连结FG,易知G是AC的中点,可证FG∥AE,从而可证AE∥平面BDF.
(2)由BC⊥平面ABE.可证BC⊥AE,由AE⊥平面BCE,可证FG⊥平面BCE,从而可证平面BDF⊥平面BCE.
解答: 证明:(1)设AC∩BD=G,连结FG,易知G是AC的中点,
因为 F是EC中点,所以 在△ACE中,FG∥AE.…(2分)
因为 AE?平面BDF,FG?平面BDF,
所以 AE∥平面BDF. …(6分)

(2)因为 平面ABCD⊥平面ABE,BC⊥AB,
平面ABCD∩平面ABE=AB,所以 BC⊥平面ABE.…(8分)
因为 AE?平面ABE,所以 BC⊥AE.…(10分)
又AE⊥BE,BC∩BE=B,所以 AE⊥平面BCE,又FG∥AE,
所以FG⊥平面BCE,…(12分)
因为 FG?平面BDF,所以平面BDF⊥平面BCE.…(14分)
点评:本题主要考察了平面与平面垂直的判定,直线与平面平行的判定,连接GF,证明FG∥AE是解题的关键,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网