题目内容
2.已知两个非零向量$\overrightarrow{a}$,$\overrightarrow{b}$满足$\overrightarrow{a}$•($\overrightarrow{a}$-$\overrightarrow{b}$)=0,且2|$\overrightarrow{a}$|=|$\overrightarrow{b}$|,则<$\overrightarrow{a}$,$\overrightarrow{b}$>=$\frac{π}{3}$.分析 由$\overrightarrow{a}$•($\overrightarrow{a}$-$\overrightarrow{b}$)=0可得$\overrightarrow{a}•\overrightarrow{b}$=${\overrightarrow{a}}^{2}$,代入夹角公式计算cos<$\overrightarrow{a},\overrightarrow{b}$>即可得出<$\overrightarrow{a}$,$\overrightarrow{b}$>的大小.
解答 解:∵$\overrightarrow{a}$•($\overrightarrow{a}-\overrightarrow{b}$)=${\overrightarrow{a}}^{2}$-$\overrightarrow{a}•\overrightarrow{b}$=0,
∴$\overrightarrow{a}•\overrightarrow{b}$=${\overrightarrow{a}}^{2}$,
∴cos<$\overrightarrow{a},\overrightarrow{b}$>=$\frac{\overrightarrow{a}•\overrightarrow{b}}{|\overrightarrow{a}||\overrightarrow{b}|}$=$\frac{1}{2}$,
又<$\overrightarrow{a},\overrightarrow{b}$>∈[0,π],
∴<$\overrightarrow{a},\overrightarrow{b}$>=$\frac{π}{3}$.
故答案为:$\frac{π}{3}$.
点评 本题考查了平面向量的数量积运算,属于基础题.
| A. | [e2-$\frac{2\sqrt{5}}{5}$,e2+$\frac{2\sqrt{5}}{5}$] | B. | [e2-$\frac{2\sqrt{5}}{5}$,e2+$\frac{2\sqrt{5}}{5}$) | C. | (e2-$\frac{2\sqrt{5}}{5}$,e2+$\frac{2\sqrt{5}}{5}$] | D. | (e2-$\frac{2\sqrt{5}}{5}$,e2+$\frac{2\sqrt{5}}{5}$) |
| A. | -$\frac{\sqrt{2}+\sqrt{6}}{4}$ | B. | -$\frac{1}{2}$ | C. | $\frac{\sqrt{2}-\sqrt{6}}{4}$ | D. | $\frac{\sqrt{3}}{2}$ |
| A. | $\frac{1}{2}$ | B. | $\frac{4}{5}$ | C. | 1 | D. | 13 |
| A. | 4 | B. | 2 | C. | 6 | D. | $\frac{7}{3}$ |