题目内容

4.设数列{an}的前n项和为Sn,n∈N*.已知a1=1,a2=$\frac{3}{2}$,a3=$\frac{5}{4}$,且4an+2=4an+1-an
(1)求a4的值;
(2)证明:{an+1-$\frac{1}{2}$an}为等比数列;
(3)求数列{an}的通项公式.

分析 (1)由a1=1,a2=$\frac{3}{2}$,a3=$\frac{5}{4}$,且4an+2=4an+1-an.可得4a4=4a3-a2
(2)由4an+2=4an+1-an,变形为:${a}_{n+2}-\frac{1}{2}{a}_{n+1}$=$\frac{1}{2}$(an+1-$\frac{1}{2}$an),即可证明.
(3)由(2)可得:an+1-$\frac{1}{2}$an=$(\frac{1}{2})^{n-1}$,变形为2n+1an+1-2nan=4,利用等差数列的通项公式即可得出.

解答 (1)解:∵a1=1,a2=$\frac{3}{2}$,a3=$\frac{5}{4}$,且4an+2=4an+1-an
∴4a4=4a3-a2=$\frac{7}{2}$,解得a4=$\frac{7}{8}$.
(2)证明:由4an+2=4an+1-an,变形为:${a}_{n+2}-\frac{1}{2}{a}_{n+1}$=$\frac{1}{2}$(an+1-$\frac{1}{2}$an),
∴{an+1-$\frac{1}{2}$an}为等比数列,首项为1,公比为$\frac{1}{2}$.
(3)解:由(2)可得:an+1-$\frac{1}{2}$an=$(\frac{1}{2})^{n-1}$,
∴2n+1an+1-2nan=4,
∴数列{2nan}是等差数列,公差为4.
∴2nan=2+4(n-1)=4n-2,
∴an=$\frac{4n-2}{{2}^{n}}$.

点评 本题考查了数列的递推关系、等差数列与等比数列的定义及其通项公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网