题目内容

11.函数y=f(x)与函数y=g(x) 互为反函数,且f(x)=2x,则函数y=g(x2-1)的定义域是(-∞,-1)∪(1,+∞).

分析 利用反函数概念得出g(x)=log2x,利用对数函数性质转化为不等式x2-1>0求解即可.

解答 解:∵函数y=f(x)与函数y=g(x) 互为反函数,且f(x)=2x
∴g(x)=log2x,定义域为(0,+∞)
∴函数y=g(x2-1)的定义域满足;x2-1>0,即x>1或x<-1,
∴定义域为:(-∞,-1)∪(1,+∞)
故答案为;(-∞,-1)∪(1,+∞)

点评 本题考查了反函数的概念性质,对数函数的性质,不等式的运用,属于容易题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网