题目内容
已知
=(cosθ,2),
=(
,sinθ).
(1)当
∥
,且θ∈(
,
)时,求cosθ-sinθ的值;
(2)若
⊥
,求
+
的值.
| a |
| b |
| 1 |
| 5 |
(1)当
| a |
| b |
| π |
| 4 |
| π |
| 2 |
(2)若
| a |
| b |
| 1+sinθ |
| 1-sinθ |
| 1-sinθ |
| 1+sinθ |
分析:(1)利用向量共线的充要条件及取锐角时的正弦值与余弦值的大小关系;
(2)利用
⊥
?
•
=0即可得出sinθ与cosθ的大小关系,把原式通法化简利用平方关系即可得出.
(2)利用
| a |
| b |
| a |
| b |
解答:解:(1)∵
∥
,∴sinθcosθ=
.
∴(sinθ-cosθ)2=1-2sinθcosθ=1-2×
=
,
∵θ∈(
,
),∴sinθ>cosθ,
∴cosθ-sinθ=-
.
(2)∵
⊥
,∴
cosθ+2sinθ=0.
∴cosθ=-10sinθ.
∴
+
=
=
=
=
=
=
.
| a |
| b |
| 2 |
| 5 |
∴(sinθ-cosθ)2=1-2sinθcosθ=1-2×
| 2 |
| 5 |
| 1 |
| 5 |
∵θ∈(
| π |
| 4 |
| π |
| 2 |
∴cosθ-sinθ=-
| ||
| 5 |
(2)∵
| a |
| b |
| 1 |
| 5 |
∴cosθ=-10sinθ.
∴
| 1+sinθ |
| 1-sinθ |
| 1-sinθ |
| 1+sinθ |
| (1+sinθ)2+(1-sinθ)2 |
| 1-sin2θ |
| 2+2sin2θ |
| cos2θ |
| 2(sin2θ+cos2θ)+2sin2θ |
| cos2θ |
=
| 4sin2θ+2cos2θ |
| cos2θ |
| 4sin2θ+2×100sin2θ |
| 100sin2θ |
| 51 |
| 25 |
点评:熟练掌握向量共线的充要条件、
⊥
?
•
=0、三角函数的单调性、平方关系是解题的关键.
| a |
| b |
| a |
| b |
练习册系列答案
相关题目