题目内容

已知
a
=(cosα,sinα),
b
=(cosβ,sinβ),其中0<α<β<π.
(1)求证:
a
+
b
a
-
b
互相垂直;
(2)若k
a
+
b
与k
a
-
b
大小相等,求β-α(k≠0).
分析:(1)由模长公式可得|
a
|
=|
b
|
=1,而(
a
+
b
)•(
a
-
b
)=|
a
|2
-|
b
|2
=0,可判垂直;
(2)由k
a
+
b
与k
a
-
b
大小相等,可得(k
a
+
b
2=(k
a
-
b
2,化简可得
a
b
=cosαcosβ+sinαsinβ=cos(β-α)=0,结合角的范围可得其值.
解答:解:(1)∵
a
=(cosα,sinα),
b
=(cosβ,sinβ),
|
a
|
=
cos2α+sin2α
=1,同理|
b
|
=1,
∴(
a
+
b
)•(
a
-
b
)=|
a
|2
-|
b
|2
=1-1=0
a
+
b
a
-
b
互相垂直;
(2)∵k
a
+
b
与k
a
-
b
大小相等,
∴(k
a
+
b
2=(k
a
-
b
2
展开化简可得4k
a
b
=0,
a
b
=cosαcosβ+sinαsinβ=cos(β-α)=0,
又∵0<α<β<π,∴β-α=
π
2
点评:本题考查数量积判断两向量的垂直关系,涉及向量的模长相等,属基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网