题目内容

已知
a
=(cosα,sinα),
b
=(cosβ,sinβ).
(1)若α-β=
6
,求
a
b
的值;
(2)若
a
b
=
4
5
,α=
π
8
,且α-β∈(-
π
2
,0)
,求tan(α+β)的值.
分析:(1)根据cos(α-β)=cosαcosβ+sinαsinβ可得
a
b
=cos(α-β),代入角求解.
(2)利用α+β=2α-(α-β)=
π
4
-(α-β),根据α-β∈(-
π
2
,0)
,由cos(α-β)求出sin(α-β),从而求出tan(α-β),再求tan(α+β)的值.
解答:解:(1)∵
a
=(cosα,sinα),
b
=(cosβ,sinβ),
又cos(α-β)=cosαcosβ+sinαsinβ,
a
b
=cos(α-β)=cos
6
=-
3
2

(2)∵
a
b
=
4
5
,∴cos(α-β)=
4
5

α-β∈(-
π
2
,0)

sin(α-β)=-
3
5
tan(α-β)=-
3
4

∵α=
π
8

∴α+β=2α-(α-β)=
π
4
-(α-β),
∴tan(α+β)=tan[
π
4
-(α-β)]=
1-tan(α-β)
1+tan(α-β)
=7.
点评:本题考查了平面向量的数量积运算,考查两角差的余弦公式,两角和的正切公式,计算求值时要细心.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网