题目内容
(2005•朝阳区一模)已知
=(cosα,sinα),
=(cosβ,sinβ),0<α<β<π
(Ⅰ)求|
|的值;
(Ⅱ)求证:
+
与
-
互相垂直;
(Ⅲ)设|
+
|=|
-
|,求β-α的值.
| a |
| b |
(Ⅰ)求|
| a |
(Ⅱ)求证:
| a |
| b |
| a |
| b |
(Ⅲ)设|
| a |
| b |
| a |
| b |
分析:(Ⅰ)由
=(cosα,sinα),能求出|
|的值.
(Ⅱ)由(
+
)•(
-
)=(cosα+cosβ)(cosα-cosβ)+(sinα+sinβ)(sinα-sinβ)=0,能证明(
+
)⊥(
-
).
(Ⅲ)由|
+
|=|
-
|,则
•
=0,能够求出β-α=
.
| a |
| a |
(Ⅱ)由(
| a |
| b |
| a |
| b |
| a |
| b |
| a |
| b |
(Ⅲ)由|
| a |
| b |
| a |
| b |
| a |
| b |
| π |
| 2 |
解答:解:(I)解:|
|=
=1(3分)
(Ⅱ)证明:∵(
+
)•(
-
)=(cosα+cosβ)(cosα-cosβ)+(sinα+sinβ)(sinα-sinβ)(6分)
=cos2α-cos2β+sin2α-sin2β=0,
∴8分)
(Ⅲ)解:∵
+
=(cosα+cosβ,sinα+sinβ),
-
=(cosα-cosβ,sinα-sinβ),(10分)
∴|
+
|=
=
,(12分)
同理|
-
|=
=
∵|
+
|=|
-
|,∴2cos(β-α)=-2cos(β-α)
∴cos(β-α)=0
∵0<α<β<π,∴0<β-α<π,∴β-α=
(14分)
| a |
| cos2α+sin2α |
(Ⅱ)证明:∵(
| a |
| b |
| a |
| b |
=cos2α-cos2β+sin2α-sin2β=0,
∴8分)
(Ⅲ)解:∵
| a |
| b |
| a |
| b |
∴|
| a |
| b |
| (cosα+cosβ)2+(sinα+sinβ)2 |
| 1+1+2cos(β-α) |
同理|
| a |
| b |
| (cosα-cosβ)2+(sinα-sinβ)2 |
| 2-2cos(β-α) |
∵|
| a |
| b |
| a |
| b |
∴cos(β-α)=0
∵0<α<β<π,∴0<β-α<π,∴β-α=
| π |
| 2 |
点评:本题考查向量的模的求法,求证:(
+
)与(
-
)互相垂直和求β-α的值.综合性强,较繁琐,容易出错.解题时要认真审题,注意三角函数恒等变换的灵活运用.
| a |
| b |
| a |
| b |
练习册系列答案
相关题目