题目内容
化简(x
-x
+1)(x
+x
+1)(x-x
+1)
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 2 |
考点:根式与分数指数幂的互化及其化简运算
专题:函数的性质及应用
分析:直接利用平方差公式化简,求出结果即可.
解答:
解:(x
-x
+1)(x
+x
+1)(x-x
+1)
=(x
+1-x
)(x
+1+x
)(x-x
+1)
=[(x
+1)2-x
](x-x
+1)
=(x+x
+1)(x-x
+1)
=(x+1)2-x
=x2+x+1
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 2 |
=(x
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 2 |
=[(x
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
=(x+x
| 1 |
| 2 |
| 1 |
| 2 |
=(x+1)2-x
=x2+x+1
点评:本题考查根式与分数指数幂的互化及其化简运算,考查计算能力.
练习册系列答案
相关题目