题目内容
若椭圆+=1的焦点在x轴上,过点作圆x2+y2=1的切线,切点分别为A,B,直线AB恰好经过椭圆的右焦点和上顶点,则椭圆的方程是 .
+=1
在路边安装路灯,灯柱AB与地面垂直,灯杆BC与灯柱AB所在平面与道路垂直,且∠ABC=120°,路灯C采用锥形灯罩,射出的光线如图中阴影部分所示,已知∠ACD=60°,路宽AD=24 m,设灯柱高AB=h(m),∠ACB=θ(30°≤θ≤45°).
(1) 求灯柱的高h(用θ表示);
(2) 若灯杆BC与灯柱AB所用材料相同,记此用料长度和为S,求S关于θ的函数解析式,并求出S的最小值.
(第11题)
已知正项数列{an}满足Sn=.
(1) 求a1,a2,a3并推测an;
(2) 用数学归纳法证明你的结论.
在极坐标系中,圆C的方程为ρ=4cos,以极点为坐标原点、极轴为x轴的正半轴建立平面直角坐标系,直线l的参数方程为(t为参数),求直线l被圆C截得的弦AB的长度.
抛物线x=y2的焦点坐标为 .
如图,在平面直角坐标系xOy中,已知椭圆E:+=1(a>b>0)的离心率e=,A1,A2分别是椭圆E的左、右两个顶点,圆A2的半径为a,过点A1作圆A2的切线,切点为P,在x轴的上方交椭圆E于点Q.
(1) 求直线OP的方程;
(2) 求的值;
(3) 设a为常数,过点O作两条互相垂直的直线,分别交椭圆E于点B,C,分别交圆A2于点M,N,记OBC和OMN的面积分别为S1,S2,求S1·S2的最大值.
若随机变量X的概率分布为P(X=k)=,k=1,2,3,4,其中c是常数,则P<X<的值为 .
下列集合中表示同一集合的是( )
A.M={(3,2)},N={(2,3)}
B.M={3,2},N={2,3}
C.M={(x,y)|x+y=1},N={y|x+y=1}
D.M={1,2},N={(1,2)}
定义在R上的函数f(x),满足当x>0时,f(x)>1,且对任意的x,y∈R,有f(x+y)=f(x)·f(y),f(1)=2.
(1)求f(0)的值;
(2)求证:对任意x∈R,都有f(x)>0;
(3)解不等式f(3-2x)>4.