ÌâÄ¿ÄÚÈÝ


Èçͼ,ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖÐ,ÒÑÖªÍÖÔ²E:+=1(a>b>0)µÄÀëÐÄÂÊe=,A1,A2·Ö±ðÊÇÍÖÔ²EµÄ×ó¡¢ÓÒÁ½¸ö¶¥µã,Ô²A2µÄ°ë¾¶Îªa,¹ýµãA1×÷Ô²A2µÄÇÐÏß,ÇеãΪP,ÔÚxÖáµÄÉÏ·½½»ÍÖÔ²EÓÚµãQ.

(1) ÇóÖ±ÏßOPµÄ·½³Ì;

(2) ÇóµÄÖµ;

(3) ÉèaΪ³£Êý,¹ýµãO×÷Á½Ìõ»¥Ïà´¹Ö±µÄÖ±Ïß,·Ö±ð½»ÍÖÔ²EÓÚµãB,C,·Ö±ð½»Ô²A2ÓÚµãM,N,¼ÇOBCºÍOMNµÄÃæ»ý·Ö±ðΪS1,S2,ÇóS1¡¤S2µÄ×î´óÖµ.


 (1) Á¬½ÓA2P,ÔòA2P¡ÍA1P,ÇÒA2P=a.

ÓÖA1A2=2a,ËùÒÔ¡ÏA1A2P=60¡ã.

ËùÒÔ¡ÏPOA2=60¡ã,ËùÒÔÖ±ÏßOPµÄ·½³ÌΪy=x.

 (2) ÓÉ(1)Öª,Ö±ÏßA2PµÄ·½³ÌΪy=-(x-a),A1PµÄ·½³ÌΪy=(x+a),

ÁªÁ¢½âµÃxP=.

ÒòΪe=,¼´=,ËùÒÔc2=a2,b2=a2,¹ÊÍÖÔ²EµÄ·½³ÌΪ+=1.

ÓɽâµÃxQ=-,

ËùÒÔ==.

(3) ²»·ÁÉèOMµÄ·½³ÌΪy=kx(k>0),

ÁªÁ¢·½³Ì×é

½âµÃB,

ËùÒÔOB=a.

ÓÃ-´úÌæÉÏÃæµÄk,µÃOC=a.

ͬÀí¿ÉµÃ,OM=,ON=.

ËùÒÔS1¡¤S2=¡¤OB¡¤OC¡¤OM¡¤ON=a4¡¤.

ÒòΪ=¡Ü,

µ±ÇÒ½öµ±k=1ʱµÈºÅ³ÉÁ¢,ËùÒÔS1¡¤S2µÄ×î´óֵΪ.


Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø