ÌâÄ¿ÄÚÈÝ
Èçͼ,ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖÐ,ÒÑÖªÍÖÔ²E:
+
=1(a>b>0)µÄÀëÐÄÂÊe=
,A1,A2·Ö±ðÊÇÍÖÔ²EµÄ×ó¡¢ÓÒÁ½¸ö¶¥µã,Ô²A2µÄ°ë¾¶Îªa,¹ýµãA1×÷Ô²A2µÄÇÐÏß,ÇеãΪP,ÔÚxÖáµÄÉÏ·½½»ÍÖÔ²EÓÚµãQ.
(1) ÇóÖ±ÏßOPµÄ·½³Ì;
(2) Çó
µÄÖµ;
(3) ÉèaΪ³£Êý,¹ýµãO×÷Á½Ìõ»¥Ïà´¹Ö±µÄÖ±Ïß,·Ö±ð½»ÍÖÔ²EÓÚµãB,C,·Ö±ð½»Ô²A2ÓÚµãM,N,¼ÇOBCºÍOMNµÄÃæ»ý·Ö±ðΪS1,S2,ÇóS1¡¤S2µÄ×î´óÖµ.
![]()
(1) Á¬½ÓA2P,ÔòA2P¡ÍA1P,ÇÒA2P=a.
ÓÖA1A2=2a,ËùÒÔ¡ÏA1A2P=60¡ã.
ËùÒÔ¡ÏPOA2=60¡ã,ËùÒÔÖ±ÏßOPµÄ·½³ÌΪy=
x.
(2) ÓÉ(1)Öª,Ö±ÏßA2PµÄ·½³ÌΪy=-
(x-a),A1PµÄ·½³ÌΪy=
(x+a),
ÁªÁ¢½âµÃxP=
.
ÒòΪe=
,¼´
=
,ËùÒÔc2=
a2,b2=
a2,¹ÊÍÖÔ²EµÄ·½³ÌΪ
+
=1.
ÓÉ
½âµÃxQ=-
,
ËùÒÔ
=
=
.
(3) ²»·ÁÉèOMµÄ·½³ÌΪy=kx(k>0),
ÁªÁ¢·½³Ì×é![]()
½âµÃB
,
ËùÒÔOB=a
.
ÓÃ-
´úÌæÉÏÃæµÄk,µÃOC=a
.
ͬÀí¿ÉµÃ,OM=
,ON=
.
ËùÒÔS1¡¤S2=
¡¤OB¡¤OC¡¤OM¡¤ON=a4¡¤
.
ÒòΪ
=
¡Ü
,
µ±ÇÒ½öµ±k=1ʱµÈºÅ³ÉÁ¢,ËùÒÔS1¡¤S2µÄ×î´óֵΪ
.
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿