题目内容

如图,平行六面体ABCD—A1B1C1D1的底面ABCD是菱形,且∠C1CB=∠C1CD=∠BCD=60°,则当的值为多少时,能使A1C⊥平面C1BD?

解析:设=a=b=c

由已知|a|=|b|,

·=(a+ b+ c)(a-b)=|a|2-|b|2+a·c-b·c=|a||c|·cos60°-|b||c|·cos60°=0,

∴CA1⊥BD.

因而A1C⊥平面C1BD的充要条件是CA1⊥C1D.

·=(a+ b+ c)·(a-c)=0|a|2+a·b-b·c-|c|2=0?|a|2+|a|·|b|·cos60°-|b|·|c|·cos60°-|c|2=0(3|a|+2|c|)·(|c|-|a|)=0.

∵|a|>0,|c|>0,∴|a|=|c|.

∴当=1时,A1C⊥平面C1BD.

温馨提示:这是条件开放性问题,从结论出发,利用向量垂直的条件由线线垂直推出线面垂直.本题通过利用向量的几何运算法则及向量的数量积运算大大降低了探索难度.


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网