题目内容

在△ABC,内角A,B,C的对边分别为a,b,c.已知∠B为锐角,b=7,ac=40,△ABC外接圆半径为
7
3
3
,求sinA的值.
考点:正弦定理
专题:解三角形
分析:由正弦定理可得:
b
sinB
=2R
,解得B=
π
3
.由余弦定理可得:b2=a2+c2-2accosB,与ac=40联立,解得a,再利用正弦定理即可得出.
解答: 解:由正弦定理可得:
b
sinB
=2R
,∴sinB=
7
7
3
3
=
3
2

∵∠B为锐角,∴B=
π
3

由余弦定理可得:b2=a2+c2-2accosB,
∴72=a2+c2-ac,即a2+c2-ac=49.
与ac=40联立,解得a=5或8.
a
sinA
=2R

sinA=
a
2R
=
5
3
14
8
3
14
点评:本题查克拉正弦定理、余弦定理,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网