题目内容
已知f(x)=x2-2(-1)klnx的导函数为f′(x),其中k∈N+.
(1)当k为偶数时,数列{an}满足:a1=1,2anf′(an)=an+12-3,求数列{an2}的通项公式;
(2)当k为奇数时,数列{bn}满足:b1=1,bn+1=
,令Sn=b1+b2+…+bn.证明:
≤b2S1+b3S2+…+bn+1Sn<n+
-1(n∈N+).
(1)当k为偶数时,数列{an}满足:a1=1,2anf′(an)=an+12-3,求数列{an2}的通项公式;
(2)当k为奇数时,数列{bn}满足:b1=1,bn+1=
| 2 |
| f′(bn) |
| n |
| 2 |
| 1 |
| 2n |
考点:数列与不等式的综合,导数的加法与减法法则
专题:计算题,等差数列与等比数列
分析:(1)当k为偶数时,求导数,由条件得:4(an2-1)=a n+1 2-3,证明{an 2-
}是一个公比为4的等比数列,即可求数列{an2}的通项公式;
(2)先证明b2S1+b3S2+…+bn+1Sn=n-(b2+…+bn+1),再证明左、右边成立即可.
| 1 |
| 3 |
(2)先证明b2S1+b3S2+…+bn+1Sn=n-(b2+…+bn+1),再证明左、右边成立即可.
解答:
(1)解:当k为偶数时,f′(x)=2x-
,∴f′(an)=2an-
,
由条件得:4(an2-1)=a n+1 2-3,故有:an+1 2-
=4(an 2-
),
∴{an 2-
}是一个公比为4的等比数列,∴an2=
×4n-1+
;
(2)证明:当k为奇数时,f′(x)=2(x+
),bn+1=
=
,
∴
-
=bn,
∴Sn=b1+b2+…+bn=
-
,
∴bn+1Sn=1-bn+1,
∴b2S1+b3S2+…+bn+1Sn=n-(b2+…+bn+1),
∵b1=1,∴bn>0,
∵bn+1=
=
=
≤
,
∴b2+…+bn+1≤
,
∴b2S1+b3S2+…+bn+1Sn=n-(b2+…+bn+1)≥
,左边得证,
∵bn+1-bn=
-bn<0
∴{bn}单调递减,
∴0<bn<1,
∵bn+1-
=
>0,
∴bn+1>
bn>…>
b1=
,
∴b2S1+b3S2+…+bn+1Sn=n-(b2+…+bn+1)<n+
-1(n∈N+).右边得证.
∴
≤b2S1+b3S2+…+bn+1Sn<n+
-1(n∈N+).
| 2 |
| x |
| 2 |
| an |
由条件得:4(an2-1)=a n+1 2-3,故有:an+1 2-
| 1 |
| 3 |
| 1 |
| 3 |
∴{an 2-
| 1 |
| 3 |
| 2 |
| 3 |
| 1 |
| 3 |
(2)证明:当k为奇数时,f′(x)=2(x+
| 1 |
| x |
| 2 |
| f′(bn) |
| bn |
| 1+bn2 |
∴
| 1 |
| bn+1 |
| 1 |
| bn |
∴Sn=b1+b2+…+bn=
| 1 |
| bn+1 |
| 1 |
| b1 |
∴bn+1Sn=1-bn+1,
∴b2S1+b3S2+…+bn+1Sn=n-(b2+…+bn+1),
∵b1=1,∴bn>0,
∵bn+1=
| 2 |
| f′(bn) |
| bn |
| 1+bn2 |
| 1 | ||
bn+
|
| 1 |
| 2 |
∴b2+…+bn+1≤
| n |
| 2 |
∴b2S1+b3S2+…+bn+1Sn=n-(b2+…+bn+1)≥
| n |
| 2 |
∵bn+1-bn=
| bn |
| 1+bn2 |
∴{bn}单调递减,
∴0<bn<1,
∵bn+1-
| bn |
| 2 |
| bn(1-bn2) |
| 1+bn2 |
∴bn+1>
| 1 |
| 2 |
| 1 |
| 2n |
| 1 |
| 2n |
∴b2S1+b3S2+…+bn+1Sn=n-(b2+…+bn+1)<n+
| 1 |
| 2n |
∴
| n |
| 2 |
| 1 |
| 2n |
点评:本题考查导数知识的运用,考查不等式的证明,考查学生分析解决问题的能力,难度较大.
练习册系列答案
相关题目