题目内容
4.(1)求证:CD⊥B1C1;
(2)求三棱锥C1-B1CD的体积.
分析 (1)推导出BC⊥CC1,AC⊥BC,由此能证明CD⊥B1C1.
(2)求出D到平面B1C1C的距离d=AC=1,三棱锥C1-B1CD的体积${V}_{{C}_{1}-{B}_{1}CD}={V}_{D-{B}_{1}{C}_{1}C}$,由此能求出结果.
解答 证明:(1)∵直三棱柱ABC-A1B1C1中,CC1⊥ABC,BC?平面ABC,
∴BC⊥CC1,
∵∠ACB=90°,∴AC⊥BC,
∵AC∩CC1=C,∴BC⊥平面ACC1A1,
∵B1C1∥BC,∴B1C1⊥平面ACC1A1,
∵CD?平面ACC1A1,∴CD⊥B1C1.
解:(2)∵在直三棱柱ABC-A1B1C1中,∠ACB=90°,
AA1=BC=2AC=2,D为AA1的中点.
∴D到平面B1C1C的距离d=AC=1,
∴三棱锥C1-B1CD的体积:
${V}_{{C}_{1}-{B}_{1}CD}={V}_{D-{B}_{1}{C}_{1}C}$=$\frac{1}{3}×{S}_{△{B}_{1}{C}_{1}C}×AC$=$\frac{1}{3}×(\frac{1}{2}×2×2)×1$=$\frac{2}{3}$.
点评 本题考查线线垂直的证明,考查三棱锥的体积的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.
练习册系列答案
相关题目
19.某校周四下午第五、六两节是选修课时间,现有甲、乙、丙三位教师可开课.已知甲、乙教师各自最多可以开设两节课,丙教师最多可以开设一节课.现要求第五、六两节课中每节课恰有两位教师开课(不必考虑教师所开课的班级和内容),则丙教师不开课的概率为( )
| A. | $\frac{1}{3}$ | B. | $\frac{1}{5}$ | C. | $\frac{1}{7}$ | D. | $\frac{1}{9}$ |
9.在平面直角坐标系中,圆M的方程(x-2)2+y2=1,若直线mx+y+2=0上至少存在一点P,使得以P为圆心,1为半径的圆与圆M有公共点,则m的取值范围是( )
| A. | m≤0 | B. | m≤-1 | C. | m≥2 | D. | m≤-$\frac{3}{2}$ |