题目内容
19.若复数z满足(1-i)z=i,则复数z的模为( )| A. | $\frac{1}{2}$ | B. | $\frac{{\sqrt{2}}}{2}$ | C. | $\sqrt{2}$ | D. | 2 |
分析 利用复数的代数形式的混合运算化简求解即可.
解答 解:由已知$z=\frac{i(1+i)}{(1+i)(i-1)}=\frac{-1+i}{-2}=\frac{1}{2}-\frac{1}{2}i$,所以$|z|=\frac{{\sqrt{2}}}{2}$,
故选:B.
点评 本题考查复数的代数形式的混合运算,基本知识的考查.
练习册系列答案
相关题目
4.如图给出的是计算$1+\frac{1}{3}+\frac{1}{5}+…+\frac{1}{2015}$的值的程序框图,其中判断框内应填入的是( )

| A. | i≤2012 | B. | i≤2014 | C. | i≤2016 | D. | i≤2018 |
11.据统计,2015年“双11”天猫总成交金额突破912亿元.某购物网站为优化营销策略,对在11月11日当天在该网站进行网购消费且消费金额不超过1000元的1000名网购者(其中有女性800名,男性200名)进行抽样分析.采用根据性别分层抽样的方法从这1000名网购者中抽取100名进行分析,得到下表:(消费金额单位:元)
女性消费情况:
男性消费情况:
(Ⅰ)计算x,y的值;在抽出的100名且消费金额在[800,1000](单位:元)的网购者中随机选出两名发放网购红包,求选出的两名网购者恰好是一男一女的概率;
(Ⅱ)若消费金额不低于600元的网购者为“网购达人”,低于600元的网购者为“非网购达人”,根据以上统计数据填写2×2列联表,并回答能否在犯错误的概率不超过0.010的前提下认为“是否为‘网购达人’”与性别有关?”
附:
(${k^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)
女性消费情况:
| 消费金额 | (0,200) | [200,400) | [400,600) | [600,800) | [800,1000] |
| 人数 | 5 | 10 | 15 | 47 | x |
| 消费金额 | (0,200) | [200,400) | [400,600) | [600,800) | [800,1000] |
| 人数 | 2 | 3 | 10 | y | 2 |
(Ⅱ)若消费金额不低于600元的网购者为“网购达人”,低于600元的网购者为“非网购达人”,根据以上统计数据填写2×2列联表,并回答能否在犯错误的概率不超过0.010的前提下认为“是否为‘网购达人’”与性别有关?”
| 女士 | 男士 | 总计 | |
| 网购达人 | 50 | 5 | 55 |
| 非网购达人 | 30 | 15 | 45 |
| 总计 | 80 | 20 | 100 |
| P(k2≥k0) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 |
| k0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
9.如果(1-2x)7=a0+a1x+a2x2+…+a7x7,那么a0+a1+…+a7的值等于( )
| A. | -1 | B. | -2 | C. | 0 | D. | 2 |