题目内容

12.已知双曲线C的方程记为$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0),点P($\sqrt{3}$,0)在双曲线上.离心率为e=2.
(1)求双曲线方程;
(2)设双曲线C的虚轴的上、下端点分别为B1,B2(如图)点A、B在双曲线上,且$\overrightarrow{{B}_{2}A}$=λ$\overrightarrow{{B}_{2}B}$,当$\overrightarrow{{B}_{1}A}$•$\overrightarrow{{B}_{1}B}$=0时,求直线AB的方程.

分析 (1)根据双曲线的性质,即可求得a和b的值,求得双曲线的方程;
(2)将直线代入双曲线方程,利用韦达定理及向量数量积的坐标运算,即可求得k的值,求得直线AB的方程.

解答 解:(1)由已知a=$\sqrt{3}$,e=2,c=2$\sqrt{3}$,
∴b2=c2-a2=9,
∴双曲线方程$\frac{{x}^{2}}{3}-\frac{{y}^{2}}{9}=1$;
(2)由B1(0,3),B2(0,-3),$\overrightarrow{{B}_{2}A}$=λ$\overrightarrow{{B}_{2}B}$,
∴A,B1,B2三点共线,设方程为y=kx-3
由$\left\{\begin{array}{l}{y=kx-3}\\{\frac{{x}^{2}}{3}-\frac{{y}^{2}}{9}=1}\end{array}\right.$,整理得(3-k2)x2+6kx-18=0,
设A(x1,y1),B(x2,y2),由k≠±$\sqrt{3}$,
则x1+x2=$\frac{6k}{{k}^{2}-3}$,x1x2=$\frac{18}{{k}^{2}-3}$,
y1+y2=k(x1+x2)-6=$\frac{18}{{k}^{2}-3}$,
y1y2=k2x1x2-3k(x1+x2)+9=9,由$\overrightarrow{{B}_{1}A}$•$\overrightarrow{{B}_{1}B}$=0,则x1x2+y1y2-3(y1+y2)+9=0,
∴k=±$\sqrt{5}$,由△>0,
∴所求AB直线为:y=±$\sqrt{5}$x-3.

点评 本题考查双曲线的简单几何性质,直线与双曲线的位置关系,考查向量坐标运算,考查计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网