题目内容
已知(1+x)2n=a0+a1x+a2x2+…+a2nx2n.
(1)求a1+a2+a3+…+a2n的值;
(2)求
-
+
-
+…+
-
的值.
(1)求a1+a2+a3+…+a2n的值;
(2)求
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| a3 |
| 1 |
| a4 |
| 1 |
| a2n-1 |
| 1 |
| a2n |
考点:二项式定理,二项式系数的性质
专题:二项式定理
分析:(1)在所给的等式中,令x=0得,a0=1;令x=1得,a0+a1+a2+a3+…+a2n=22n,从而求得a1+a2+a3+…+a2n的值.
(2)由题意可得ak=
,利用组合数的性质可得
=
(
+
),可得
-
=
(
-
).要求的式子即
(
-
+
-
+…+
-
),消项化简可得结果.
(2)由题意可得ak=
| C | k 2n |
| 1 | ||
|
| 2n+1 |
| 2n+2 |
| 1 | ||
|
| 1 | ||
|
| 1 | ||
|
| 1 | ||
|
| 2n+1 |
| 2n+2 |
| 1 | ||
|
| 1 | ||
|
| 2n+1 |
| 2n+2 |
| 1 | ||
|
| 1 | ||
|
| 1 | ||
|
| 1 | ||
|
| 1 | ||
|
| 1 | ||
|
解答:
解 (1)在(1+x)2n=a0+a1x+a2x2+…+a2nx2n 中,
令x=0得,a0=1;令x=1得,a0+a1+a2+a3+…+a2n=22n.
于是a1+a2+a3+…+a2n=22n-1.
(2)由题意可得ak=
,k=1,2,3,…,2n,
首先考虑
+
=
+
=
=
=
,
则
=
(
+
),
∴
-
=
(
-
).
故
-
+
-
+…+
-
=
(
-
+
-
+…+
-
)
=
(
-
)=
(
-1)=-
.
令x=0得,a0=1;令x=1得,a0+a1+a2+a3+…+a2n=22n.
于是a1+a2+a3+…+a2n=22n-1.
(2)由题意可得ak=
| C | k 2n |
首先考虑
| 1 | ||
|
| 1 | ||
|
| k!(2n+1-k)! |
| (2n+1)! |
| (k+1)!(2n-k)! |
| (2n+1) |
=
| k!(2n-k)!(2n+1-k+k+1) |
| (2n+1)! |
| k!(2n-k)!(2n+2) |
| (2n+1)! |
| 2n+2 | ||
(2n+1)
|
则
| 1 | ||
|
| 2n+1 |
| 2n+2 |
| 1 | ||
|
| 1 | ||
|
∴
| 1 | ||
|
| 1 | ||
|
| 2n+1 |
| 2n+2 |
| 1 | ||
|
| 1 | ||
|
故
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| a3 |
| 1 |
| a4 |
| 1 |
| a2n-1 |
| 1 |
| a2n |
| 2n+1 |
| 2n+2 |
| 1 | ||
|
| 1 | ||
|
| 1 | ||
|
| 1 | ||
|
| 1 | ||
|
| 1 | ||
|
=
| 2n+1 |
| 2n+2 |
| 1 | ||
|
| 1 | ||
|
| 2n+1 |
| 2n+2 |
| 1 |
| 2n+1 |
| n |
| n+1 |
点评:本题主要考查二项式定理的应用、赋值法、组合数公式、组合数的性质.关于组合数的倒数问题一直没有涉及过,注意关注一下,属于难题.
练习册系列答案
相关题目
在等差数列{an}中,已知a3+a9=16,则该数列前11项和S11=( )
| A、58 | B、88 |
| C、143 | D、176 |
一个几何体的三视图如图所示(单位:cm),则该几何体的体积为( )

| A、1cm3 |
| B、2cm3 |
| C、3cm3 |
| D、4cm3 |