题目内容

19.已知函数$f(x)=\left\{\begin{array}{l}\frac{3}{x-1},x≥2\\|{{2^x}-1}|,x<2\end{array}\right.$,若方程f(x)-a=0有两个不同的实数根,则实数a的取值范围是(  )
A.(0,1)B.(0,2)C.(0,3)D.[1,3)

分析 作函数$f(x)=\left\{\begin{array}{l}\frac{3}{x-1},x≥2\\|{{2^x}-1}|,x<2\end{array}\right.$的图象,从而利用方程与函数的关系判断求解即可.

解答 解:作函数$f(x)=\left\{\begin{array}{l}\frac{3}{x-1},x≥2\\|{{2^x}-1}|,x<2\end{array}\right.$的图象如下,

结合图象可知,
当1≤a<3时,方程f(x)-a=0有两个不同的实数根,
故选:D.

点评 本题考查了数形结合的思想应用及分段函数的图象应用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网