题目内容
已知等差数列{an}的前n项和为Sn,且a1+a3=10,S4=24.
(1)求数列{an}的通项公式;
(2)令Tn=
+
+…+
,求证:Tn<
.
(1)求数列{an}的通项公式;
(2)令Tn=
| 1 |
| S1 |
| 1 |
| S2 |
| 1 |
| Sn |
| 3 |
| 4 |
考点:数列的求和,等差数列的前n项和
专题:等差数列与等比数列
分析:(1)由已知条件利用等差数列通项公式和前n项和公式列方程组,求出首项和公差,由此能求出an=2n+1.
(2)由Sn=
=
=n(n+2),利用裂项求和法能证明Tn<
.
(2)由Sn=
| n(a1+an) |
| 2 |
| n(3+2n+1) |
| 2 |
| 3 |
| 4 |
解答:
(1)解:设等差数列{an}的公差为d,
∵a1+a3=10,S4=24,
∴
,
解得a1=3,d=2,
∴an=3+2(n-1)=2n+1.
(2)证明:由(1)得Sn=
=
=n(n+2),
∴Tn=
+
+…+
=
+
+
+…+
=
[(1-
)+(
-
)+(
-
)+…+(
-
)+(
-
)]…(10分)
=
(1+
-
-
)
=
-
(
+
)…(12分)
<
.…(14分)
∵a1+a3=10,S4=24,
∴
|
解得a1=3,d=2,
∴an=3+2(n-1)=2n+1.
(2)证明:由(1)得Sn=
| n(a1+an) |
| 2 |
| n(3+2n+1) |
| 2 |
∴Tn=
| 1 |
| S1 |
| 1 |
| S2 |
| 1 |
| Sn |
=
| 1 |
| 1×3 |
| 1 |
| 2×4 |
| 1 |
| 3×5 |
| 1 |
| n(n+2) |
=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| n-1 |
| 1 |
| n+1 |
| 1 |
| n |
| 1 |
| n+2 |
=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| n+1 |
| 1 |
| n+2 |
=
| 3 |
| 4 |
| 1 |
| 2 |
| 1 |
| n+1 |
| 1 |
| n+2 |
<
| 3 |
| 4 |
点评:本小题主要考查等差数列、数列求和、不等式等基础知识,考查运算求解能力和推理论证能力,考查化归与转化思想、函数与方程思想,解题时要裂项求和法的合理运用.
练习册系列答案
相关题目
已知a,b为正实数,且a+b=1,则log2a+log2b的最大值为( )
| A、2 | ||
| B、-2 | ||
C、
| ||
D、-
|