题目内容

3.如图,D,C,B三点在地面同一直线上,从地面上C,D两点望山顶A,测得它们的
仰角分别为45°和30°,已知CD=200米,点C位于BD上,则山高AB等于(  )
A.100$\sqrt{2}$米B.50($\sqrt{3}$+1)米C.$100({\sqrt{3}+1})$米D.200米

分析 直角△ABC与直角△ABD有公共边AB,若设AB=x,则在直角△ABC与直角△ABD就满足解直角三角形的条件,可以用x表示出BC与BD的长,根据BD-BC=CD,即可列方程求解.

解答 解:设AB=x米,在直角△ACB中,∠ACB=45°,
∴BC=AB=x米.
在直角△ABD中,∠D=30°,BD=$\sqrt{3}$x,
∵BD-BC=CD,
∴$\sqrt{3}$x-x=200,
解得:x=100($\sqrt{3}$+1).
故选C.

点评 本题主要考查了解直角三角形的方法,解决的关键是注意到两个直角三角形有公共的边,利用公共边表示其它的量,从而把问题转化为方程问题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网