题目内容
17.已知公差不为0的等差数列{an}中,a1,a3,a7成等比数列,且a2n=2an-1,等比数列{bn}满足bn+bn+1=$\frac{4}{{3}^{n+1}}$.(1)求数列{an},{bn}的通项公式;
(2)令cn=an•bn,求数列{cn}的前n项和Tn.
分析 (1)公差d不为0的等差数列{an}中,a1,a3,a7成等比数列,且a2n=2an-1,可得$({a}_{1}+2d)^{2}$=a1(a1+6d),a2=2a1-1=a1+d,联立解出:a1,d.可得an.等比数列{bn}满足bn+bn+1=$\frac{4}{{3}^{n+1}}$.可得:b1+b1q=$\frac{4}{9}$,${b}_{1}(q+{q}^{2})$=$\frac{4}{27}$,联立解出即可得出bn.
(2)cn=an•bn=(n+1)$•\frac{1}{{3}^{n}}$.利用错位相减法即可得出.
解答 解:(1)∵公差d不为0的等差数列{an}中,a1,a3,a7成等比数列,且a2n=2an-1,
∴$({a}_{1}+2d)^{2}$=a1(a1+6d),a2=2a1-1=a1+d,
联立解得:a1=2,d=1.
∴an=2+(n-1)=n+1.
等比数列{bn}满足bn+bn+1=$\frac{4}{{3}^{n+1}}$.
∴b1+b1q=$\frac{4}{9}$,${b}_{1}(q+{q}^{2})$=$\frac{4}{27}$,
联立解得q=$\frac{1}{3}$=b1,
∴bn=$(\frac{1}{3})^{n}$.
(2)cn=an•bn=(n+1)$•\frac{1}{{3}^{n}}$.
∴数列{cn}的前n项和Tn=$2×\frac{1}{3}+3×\frac{1}{{3}^{2}}$+$4×\frac{1}{{3}^{3}}$+…+(n+1)$•\frac{1}{{3}^{n}}$.
∴$\frac{1}{3}{T}_{n}$=2×$\frac{1}{{3}^{2}}+3×\frac{1}{{3}^{3}}$+…+n$•\frac{1}{{3}^{n}}$+(n+1)$•\frac{1}{{3}^{n+1}}$,
∴$\frac{2}{3}$Tn=$\frac{2}{3}+\frac{1}{{3}^{2}}+\frac{1}{{3}^{3}}$+…+$\frac{1}{{3}^{n}}$-(n+1)$•\frac{1}{{3}^{n+1}}$=$\frac{1}{3}+\frac{\frac{1}{3}(1-\frac{1}{{3}^{n}})}{1-\frac{1}{3}}$-(n+1)$•\frac{1}{{3}^{n+1}}$,
可得:Tn=$\frac{5}{4}$-$\frac{2n+5}{4×{3}^{n}}$.
点评 本题考查了等差数列与等比数列的通项公式与求和公式、错位相减法,考查了推理能力与计算能力,属于中档题.
| A. | m?α,n?α,m∥β,n∥β,则α∥β | B. | m∥α,n∥β,且α∥β,则m∥n | ||
| C. | m⊥α,n?β,m⊥n,则α⊥β | D. | m⊥α,n⊥β,且α⊥β,则m⊥n |
| A. | $\frac{1}{6}$ | B. | $\frac{1}{4}$ | C. | $\frac{1}{3}$ | D. | $\frac{1}{2}$ |
| A. | ?x0∈(-∞,0),x03+x0<0 | B. | ?x∈(-∞,0),x3+x≥0 | ||
| C. | ?x0∈[0,+∞),x3+x<0 | D. | ?x0∈[0,+∞),x03+x0≥0 |