题目内容
已知函数f(x)=
x
-ax+(a-1)
,
。
(1)讨论函数
的单调性;(2)若
,设
,
(ⅰ)求证g(x)为单调递增函数;
(ⅱ)求证对任意x
,x

,x
x
,有
.
(1)讨论函数
(ⅰ)求证g(x)为单调递增函数;
(ⅱ)求证对任意x
(1)当a=2时,f(x)在(0,+∞)单调递增;
当1<a<2时,f(x)在(a-1,1)单调递减,在(0,a-1),(1,+∞)单调递增;
当a>2时,f(x)在(1,a-1)单调递减,在(0,1),(a-1,+∞)单调递增.
(2)见解析.
当1<a<2时,f(x)在(a-1,1)单调递减,在(0,a-1),(1,+∞)单调递增;
当a>2时,f(x)在(1,a-1)单调递减,在(0,1),(a-1,+∞)单调递增.
(2)见解析.
试题分析:(1)先求出函数的导函数,然后求出
试题解析:(1)∵函数f(x)=
∴f(x)的定义域为(0,+∞),
令
①若a-1=1,即a=2时,
故f(x)在(0,+∞)单调递增.
②若0<a-1<1,即1<a<2时,
由f′(x)<0得,a-1<x<1;
由f′(x)>0得,0<x<a-1,或x>1.
故f(x)在(a-1,1)单调递减,在(0,a-1),(1,+∞)单调递增.
③若a-1>1,即a>2时,
由f′(x)<0得,1<x<a-1;由f′(x)>0得,0<x<1,或x>a-1.
故f(x)在(1,a-1)单调递减,在(0,1),(a-1,+∞)单调递增.
综上可得,当a=2时,f(x)在(0,+∞)单调递增;
当1<a<2时,f(x)在(a-1,1)单调递减,在(0,a-1),(1,+∞)单调递增;
当a>2时,f(x)在(1,a-1)单调递减,在(0,1),(a-1,+∞)单调递增.
(2) (ⅰ)
则
由于1<a<5,故
(ⅱ)由(ⅰ)知当
故
练习册系列答案
相关题目