题目内容
在△ABC中,若b2sin2C+c2sin2B=2bccosBcosC,则△ABC是( )
| A.等边三角形 | B.等腰三角形 |
| C.直角三角形 | D.等腰直角三角形 |
根据正弦定理
=
=
=2R,得到a=2RsinA,b=2RsinB,c=2RsinC,
代入已知的等式得:(2RsinB)2sin2C+(2RsinC)2sin2B=8R2sinBsinCcosBcosC,
即sin2Bsin2C+sin2Csin2B=2sinBsinCcosBcosC,又sinBsinC≠0,
∴sinBsinC=cosBcosC,
∴cosBcosC-sinBsinC=cos(B+C)=0,又B和C都为三角形的内角,
∴B+C=90°,
则△ABC为直角三角形.
故选C
| a |
| sinA |
| b |
| sinB |
| c |
| sinC |
代入已知的等式得:(2RsinB)2sin2C+(2RsinC)2sin2B=8R2sinBsinCcosBcosC,
即sin2Bsin2C+sin2Csin2B=2sinBsinCcosBcosC,又sinBsinC≠0,
∴sinBsinC=cosBcosC,
∴cosBcosC-sinBsinC=cos(B+C)=0,又B和C都为三角形的内角,
∴B+C=90°,
则△ABC为直角三角形.
故选C
练习册系列答案
相关题目
在△ABC中,若b2+c2=a2+bc,则A=( )
| A、30° | B、45° | C、60° | D、120° |