题目内容

在△ABC中,若b2sin2C+c2sin2B=2bccosBcosC,则△ABC是(  )
A.等边三角形B.等腰三角形
C.直角三角形D.等腰直角三角形
根据正弦定理
a
sinA
=
b
sinB
=
c
sinC
=2R,得到a=2RsinA,b=2RsinB,c=2RsinC,
代入已知的等式得:(2RsinB)2sin2C+(2RsinC)2sin2B=8R2sinBsinCcosBcosC,
即sin2Bsin2C+sin2Csin2B=2sinBsinCcosBcosC,又sinBsinC≠0,
∴sinBsinC=cosBcosC,
∴cosBcosC-sinBsinC=cos(B+C)=0,又B和C都为三角形的内角,
∴B+C=90°,
则△ABC为直角三角形.
故选C
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网