题目内容
3.(Ⅰ)证明:PD⊥平面ABE;
(Ⅱ)求三棱锥C-PBD外接球的体积.
分析 (Ⅰ)以A为原点,AB为x轴,AD为y轴,AP为z轴,建立空间直角坐标系,利用向量法能证明PD⊥平面ABE.
(Ⅱ)三棱锥C-PBD外接球即以AB,AD,AP为棱的长方体的外接球,由此能求出三棱锥C-PBD外接球的体积.
解答 证明:(Ⅰ)
以A为原点,AB为x轴,AD为y轴,AP为z轴,建立空间直角坐标系,
P(0,0,2),D(0,2,0),A(0,0,0),B(2$\sqrt{7}$,0,0),E(0,1,1),
$\overrightarrow{PD}$=(0,2,-2),$\overrightarrow{AB}$=(2$\sqrt{7}$,0,0),$\overrightarrow{AE}$=(0,1,1),
$\overrightarrow{PD}$$•\overrightarrow{AB}$=0,$\overrightarrow{PD}•\overrightarrow{AE}$=0,
∴PD⊥AB,PD⊥AE,
∵AB∩AE=A,∴PD⊥平面ABE.
解:(Ⅱ)∵AD,AP,AB两垂直,底面ABCD为矩形,
∴三棱锥C-PBD外接球即以AB,AD,AP为棱的长方体的外接球,
∴三棱锥C-PBD外接球的半径R=$\frac{\sqrt{4+4+28}}{2}$=3,
∴三棱锥C-PBD外接球的体积V=$\frac{4}{3}π{R}^{3}$=$\frac{4}{3}π×27$=36π.
点评 本题考查线面垂直的证明,考查三棱锥的外接的体积的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.
练习册系列答案
相关题目
14.某班主任为了对本班学生的数学和物理成绩进行分析,随机抽取了8位学生的数学和物理成绩如下表.
(Ⅰ)通过对样本数据进行初步处理发现,物理成绩y与数学成绩x之间具有线性相关性,求y与x的线性回归方程(系数精确到0.01).
(Ⅱ)当某学生的数学成绩为100分时,估计该生的物理成绩.(精确到0.1分)
参考公式:回归直线的方程是:$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$,其中$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y)}}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$.
参考数据:$\sum_{i=1}^{8}({x}_{1}-\overline{x})^{2}$=1050,$\sum_{i=1}^{8}({y}_{i}-\overline{y})^{2}$≈457,$\sum_{i=1}^{8}({x}_{1}-\overline{x})({y}_{1}-\overline{y})$≈688,$\sqrt{1050}$≈32.4.$\sqrt{457}$≈21.4,$\sqrt{550}$≈23.5.
| 学生编号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| 数学分数x | 60 | 65 | 70 | 75 | 80 | 85 | 90 | 95 |
| 物理分数y | 72 | 77 | 80 | 84 | 88 | 90 | 93 | 95 |
(Ⅱ)当某学生的数学成绩为100分时,估计该生的物理成绩.(精确到0.1分)
参考公式:回归直线的方程是:$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$,其中$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y)}}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$.
参考数据:$\sum_{i=1}^{8}({x}_{1}-\overline{x})^{2}$=1050,$\sum_{i=1}^{8}({y}_{i}-\overline{y})^{2}$≈457,$\sum_{i=1}^{8}({x}_{1}-\overline{x})({y}_{1}-\overline{y})$≈688,$\sqrt{1050}$≈32.4.$\sqrt{457}$≈21.4,$\sqrt{550}$≈23.5.
18.已知数列{an}满足an+1-an=2,a1=-5,则|a1|+|a2|+…+|a6|=( )
| A. | 9 | B. | 15 | C. | 18 | D. | 30 |