题目内容
已知抛物线y2=2px(p>0)的焦点为F,A是抛物物上横坐标为4,且位于x轴上方的点,A到抛物线准线的距离等于5,过A作AB垂直于y轴,垂足为B,OB的中点为M.
(1)求抛物线的方程;
(2)若过M作MN⊥FA,垂足为N,求点N的坐标.
(1)抛物线y2=2px的准线为x=-
,
于是4+
=5,
∴p=2.∴抛物线方程为y2=4x.
(2)∵点A的坐标是(4,4),由题意得B(0,4),M(0,2).
又∵F(1,0),∴kFA=
,
∵MN⊥FA,∴kMN=-
.
又FA的方程为y=
(x-1),
故MN的方程为y-2=-
x,解方程组得x=
,y=
,
∴N的坐标为(
,
).
甲、乙两台机床生产同一型号零件.记生产的零件的尺寸为t(cm),相关行业质检部门规定:若t∈(2.9,3.1],则该零件为优等品;若t∈(2.8,2.9]∪(3.1,3.2],则该零件为中等品;其余零件为次品.现分别从甲、乙机床生产的零件中各随机抽取50件,经质量检测得到下表数据:
| 尺寸 | [2.7, 2.8] | (2.8, 2.9] | (2.9, 3.0] | (3.0, 3.1] | (3.1, 3.2] | (3.2, 3.3] |
| 甲机床零件频数 | 2 | 3 | 20 | 20 | 4 | 1 |
| 乙机床零件频数 | 3 | 5 | 17 | 13 | 8 | 4 |
(1)设生产每件产品的利润为:优等品3元,中等品1元,次品亏本1元.若将频率视为概率,试根据样本估计总体的思想,估算甲机床生产一件零件的利润的数学期望;
(2)对于这两台机床生产的零件,在排除其他因素影响的情况下,试根据样本估计总体的思想,估计约有多大的把握认为“零件优等与否和所用机床有关”,并说明理由.
参考公式:K2=
.
参考数据:
| P(K2≥k0) | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 |
| k0 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |