ÌâÄ¿ÄÚÈÝ
ÒÑÖªº¯Êýf£¨x£©=
x2-£¨a-1£©x+alnx£¬ÆäÖг£Êýa¡ÊR£®
£¨¢ñ£©µ±a=6ʱ£¬Çóº¯Êýf£¨x£©µÄ¼«Öµµã£»
£¨¢ò£©Ö¤Ã÷£º¶ÔÈÎÒâx¡Ê[1£¬+¡Þ£©£¬lnx¡Ý
ºã³ÉÁ¢£»
£¨¢ó£©¶ÔÓÚº¯Êýf£¨x£©Í¼ÏóÉϵIJ»Í¬Á½µãA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¨x1£¼x2£©£¬Èç¹ûÔÚº¯Êýf£¨x£©Í¼ÏóÉÏ´æÔÚµãM£¨x0£¬y0£©£¨ÆäÖÐx0¡Ê£¨x1£¬x2£©£©£¬Ê¹µÃÔÚµãM´¦µÄÇÐÏßl¡ÎAB£¬Ôò³ÆÖ±ÏßAB´æÔÚ¡°°éÂÂÇÐÏß¡±£®ÌØ±ðµØ£¬µ±x0=
£¬ÓÖ³ÆÖ±ÏßAB´æÔÚ¡°ÖÐÖµ°éÂÂÇÐÏß¡±£®ÊÔÎÊ£ºµ±a=1ʱ£¬¶ÔÓÚº¯Êýf£¨x£©Í¼ÏóÉϲ»Í¬Á½µãA¡¢B£¬Ö±ÏßABÊÇ·ñ´æÔÚ¡°ÖÐÖµ°éÂÂÇÐÏß¡±£¬²¢Ö¤Ã÷ÄãµÄ½áÂÛ£®
| 1 |
| 2 |
£¨¢ñ£©µ±a=6ʱ£¬Çóº¯Êýf£¨x£©µÄ¼«Öµµã£»
£¨¢ò£©Ö¤Ã÷£º¶ÔÈÎÒâx¡Ê[1£¬+¡Þ£©£¬lnx¡Ý
| 2(x-1) |
| x+1 |
£¨¢ó£©¶ÔÓÚº¯Êýf£¨x£©Í¼ÏóÉϵIJ»Í¬Á½µãA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¨x1£¼x2£©£¬Èç¹ûÔÚº¯Êýf£¨x£©Í¼ÏóÉÏ´æÔÚµãM£¨x0£¬y0£©£¨ÆäÖÐx0¡Ê£¨x1£¬x2£©£©£¬Ê¹µÃÔÚµãM´¦µÄÇÐÏßl¡ÎAB£¬Ôò³ÆÖ±ÏßAB´æÔÚ¡°°éÂÂÇÐÏß¡±£®ÌØ±ðµØ£¬µ±x0=
| x1+x2 |
| 2 |
¿¼µã£ºº¯Êýºã³ÉÁ¢ÎÊÌâ,ÀûÓõ¼ÊýÑо¿º¯ÊýµÄµ¥µ÷ÐÔ,ÀûÓõ¼ÊýÑо¿º¯ÊýµÄ¼«Öµ
רÌ⣺µ¼ÊýµÄ×ÛºÏÓ¦ÓÃ
·ÖÎö£º£¨¢ñ£©µ±a=6ʱ£¬Çóº¯Êýµ¼Êý£¬¸ù¾Ýº¯Êý¼«ÖµºÍµ¼ÊýÖ®¼äµÄ¹ØÏµ¼´¿ÉÇóº¯Êýf£¨x£©µÄ¼«Öµµã£»
£¨¢ò£©¹¹Ô캯Êýg£¨x£©=lnx-
£¬Çóº¯ÊýµÄµ¼Êý£¬¼´¿ÉÖ¤Ã÷²»µÈʽ£»
£¨¢ó£©¸ù¾Ý¡°ÖÐÖµ°éÂÂÇÐÏß¡±µÄ¶¨Ò壬½áºÏÇÐÏ߯½ÐкÍбÂÊÖ®¼äµÄ¹ØÏµ£¬¼´¿ÉµÃµ½½áÂÛ£®
£¨¢ò£©¹¹Ô캯Êýg£¨x£©=lnx-
| 2(x-1) |
| x+1 |
£¨¢ó£©¸ù¾Ý¡°ÖÐÖµ°éÂÂÇÐÏß¡±µÄ¶¨Ò壬½áºÏÇÐÏ߯½ÐкÍбÂÊÖ®¼äµÄ¹ØÏµ£¬¼´¿ÉµÃµ½½áÂÛ£®
½â´ð£º
½â£º£¨¢ñ£©µ±a=6ʱ£¬f£¨x£©=
x2-5x+6lnx£¬
f¡ä£¨x£©=x-5+
=
£®£¨x£¾0£©£¬
µ±f¡ä£¨x£©=0ʱ£¬½âµÃx=2»òx=3£¬
µ±0£¼x£¼2»òx£¾3ʱ£¬f¡ä£¨x£©£¾0£¬¼´f£¨x£©ÔÚ£¨0£¬2£©£¬£¨3£¬+¡Þ£©Éϵ¥µ÷µÝÔö£¬
µ±2£¼x£¼3ʱ£¬f¡ä£¨x£©£¼0£¬f£¨x£©ÔÚ£¨2£¬3£©Éϵ¥µ÷µÝ¼õ£¬
¡àx=2Ϊº¯Êýf£¨x£©µÄ¼«´óÖµµã£¬x=3Ϊº¯Êýf£¨x£©µÄ¼«Ð¡Öµµã£®
£¨¢ò£©Áîg£¨x£©=lnx-
£¬£¨x¡Ý1£©£¬
Ôòg¡ä£¨x£©=
-
=
£¬
¡ßx¡Ý1£¬¡àg¡ä£¨x£©¡Ý0£¬
¡àg£¨x£©ÔÚ[1£¬+¡Þ£©ÉϵÝÔö£¬
¡àg£¨x£©¡Ýg£¨1£©=0£¨µ±ÇÒ½öµ±x=1ʱµÈºÅ³ÉÁ¢£©£¬
¼´Ö¤£º¶ÔÈÎÒâx¡Ê[1£¬+¡Þ£©£¬lnx¡Ý
ºã³ÉÁ¢£»
£¨ III£©µ±a=1£¬f£¨x£©=
x2-+lnx£¬x£¾0£¬
f¡ä£¨x£©=x+
£¬¼ÙÉ躯Êýf£¨x£©´æÔÚ¡°ÖÐÖµ°éÂÂÇÐÏß¡±£®
ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¨x1£¼x2£©£¬M£¨x0£¬y0£©ÊÇÇúÏßy=f£¨x£©ÉϵIJ»Í¬µã£¬ÇÒ0£¼x1£¼x2£¬x0=
£¬
ÔòÖ±ÏßABµÄбÂÊ£ºkAB=
=
=
£¨x1+x2£©+
£¬
ÇúÏßÔÚµãM£¨x0£¬y0£©´¦µÄÇÐÏßбÂÊ£ºk=f¡ä£¨x0£©=f¡ä£¨
£©=
+
£¬
ÒÀÌâÒ⣺kAB=k£¬¼´
£¨x1+x2£©+
=
+
£¬
»¯¼òµÃ
=
£¬
¼´ln
=
=
£¬
Éèt=
£¬Ôòt£¾1£¬ÉÏʽ»¯Îªlnt=
£¬
ÓÉ£¨2£©Öªt£¾1ʱ£¬lnx£¾
ºã³ÉÁ¢£®
¡àÔÚ£¨1£¬+¡Þ£©ÄÚ²»´æÔÚt£¬Ê¹µÃlnt=
³ÉÁ¢£®
×ÛÉÏËùÊö£¬¼ÙÉè²»³ÉÁ¢£®ËùÒÔ£¬º¯Êýf£¨x£©²»´æÔÚ¡°ÖÐÖµ°éÂÂÇÐÏß¡±£®
| 1 |
| 2 |
f¡ä£¨x£©=x-5+
| 6 |
| x |
| x2-5x+6 |
| x |
µ±f¡ä£¨x£©=0ʱ£¬½âµÃx=2»òx=3£¬
µ±0£¼x£¼2»òx£¾3ʱ£¬f¡ä£¨x£©£¾0£¬¼´f£¨x£©ÔÚ£¨0£¬2£©£¬£¨3£¬+¡Þ£©Éϵ¥µ÷µÝÔö£¬
µ±2£¼x£¼3ʱ£¬f¡ä£¨x£©£¼0£¬f£¨x£©ÔÚ£¨2£¬3£©Éϵ¥µ÷µÝ¼õ£¬
¡àx=2Ϊº¯Êýf£¨x£©µÄ¼«´óÖµµã£¬x=3Ϊº¯Êýf£¨x£©µÄ¼«Ð¡Öµµã£®
£¨¢ò£©Áîg£¨x£©=lnx-
| 2(x-1) |
| x+1 |
Ôòg¡ä£¨x£©=
| 1 |
| x |
| 2(x+1)-2(x-1) |
| (x+1)2 |
| (x-1)2 |
| x(x+1)2 |
¡ßx¡Ý1£¬¡àg¡ä£¨x£©¡Ý0£¬
¡àg£¨x£©ÔÚ[1£¬+¡Þ£©ÉϵÝÔö£¬
¡àg£¨x£©¡Ýg£¨1£©=0£¨µ±ÇÒ½öµ±x=1ʱµÈºÅ³ÉÁ¢£©£¬
¼´Ö¤£º¶ÔÈÎÒâx¡Ê[1£¬+¡Þ£©£¬lnx¡Ý
| 2(x-1) |
| x+1 |
£¨ III£©µ±a=1£¬f£¨x£©=
| 1 |
| 2 |
f¡ä£¨x£©=x+
| 1 |
| x |
ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¨x1£¼x2£©£¬M£¨x0£¬y0£©ÊÇÇúÏßy=f£¨x£©ÉϵIJ»Í¬µã£¬ÇÒ0£¼x1£¼x2£¬x0=
| x1+x2 |
| 2 |
ÔòÖ±ÏßABµÄбÂÊ£ºkAB=
| y2-y1 |
| x2-x1 |
| ||||
| x2-x1 |
| 1 |
| 2 |
| lnx2-lnx1 |
| x2-x1 |
ÇúÏßÔÚµãM£¨x0£¬y0£©´¦µÄÇÐÏßбÂÊ£ºk=f¡ä£¨x0£©=f¡ä£¨
| x1+x2 |
| 2 |
| x1+x2 |
| 2 |
| 2 |
| x1+x2 |
ÒÀÌâÒ⣺kAB=k£¬¼´
| 1 |
| 2 |
| lnx2-lnx1 |
| x2-x1 |
| x1+x2 |
| 2 |
| 2 |
| x1+x2 |
»¯¼òµÃ
| lnx2-lnx1 |
| x2-x1 |
| 2 |
| x1+x2 |
¼´ln
| x2 |
| x1 |
| 2(x2-x1) |
| x1+x2 |
2(
| ||
|
Éèt=
| x2 |
| x1 |
| 2(t-1) |
| t+1 |
ÓÉ£¨2£©Öªt£¾1ʱ£¬lnx£¾
| 2(x-1) |
| x+1 |
¡àÔÚ£¨1£¬+¡Þ£©ÄÚ²»´æÔÚt£¬Ê¹µÃlnt=
| 2(t-1) |
| t+1 |
×ÛÉÏËùÊö£¬¼ÙÉè²»³ÉÁ¢£®ËùÒÔ£¬º¯Êýf£¨x£©²»´æÔÚ¡°ÖÐÖµ°éÂÂÇÐÏß¡±£®
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éº¯ÊýµÄ¼«ÖµºÍµ¼ÊýµÄ¹ØÏµ£¬×ۺϿ¼²éµ¼ÊýµÄÓ¦Ó㬿¼²éѧÉúµÄÔËËãÄÜÁ¦£¬×ÛºÏÐÔ½ÏÇ¿£¬ÔËËãÁ¿½Ï´ó£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
Ò»¸öÀâÖùÖÁÉÙÓУ¨¡¡¡¡£©¸öÃæ£¬ÃæÊý×îÉÙµÄÒ»¸öÀâ×¶ÓУ¨¡¡¡¡£©¸ö¶¥µã£¬¶¥µã×îÉÙµÄÒ»¸öÀą̂ÓУ¨¡¡¡¡£©Ìõ²àÀ⣮
| A¡¢8 4 6 |
| B¡¢5 4 3 |
| C¡¢4 4 4 |
| D¡¢4 6 3 |
ÒÑ֪ʵÊýx£¬yÂú×ã
£¬Ôòz=
µÄȡֵ·¶Î§Îª£¨¡¡¡¡£©
|
| 2x+y+2 |
| x |
A¡¢[0£¬
| ||
B¡¢£¨-¡Þ£¬0]¡È[
| ||
C¡¢[2£¬
| ||
D¡¢£¨-¡Þ£¬2]¡È[
|