题目内容
已知A(2,3,-1),B(2,6,2),C(1,4,-1),则向量与的夹角为( )
A.45° B.90° C.30° D.60°
将函数y=sin(4x﹣)图象上各点的横坐标伸长到原来的2倍,再向左平移个单位,纵坐标不变,所得函数图象的一条对称轴的方程是( )
A. B. C. D.
设分别是的三边上的点,且,,,则与( )
A.反向平行 B.同向平行 C.互相垂直 D.既不平行也不垂直
已知常数都是实数,的导函数为的解集为,若的极小值等于-105,则的值是__________.
已知为双曲线的左、右焦点,点在上,|,则( )
有一块正方形菜地,所在直线是一条小河,收货的蔬菜可送到点或河边运走。于是,菜地分为两个区域和,其中中的蔬菜运到河边较近,中的蔬菜运到点较近,而菜地内和的分界线上的点到河边与到点的距离相等,现建立平面直角坐标系,其中原点为的中点,点的坐标为(1,0),如图
(1)求菜地内的分界线的方程
(2)菜农从蔬菜运量估计出面积是面积的两倍,由此得到面积的“经验值”为。设是上纵坐标为1的点,请计算以为一边、另一边过点的矩形的面积,及五边形的面积,并判断哪一个更接近于面积的经验值
设,若对任意实数都有,则满足条件的有序实数组的组数为 .
将边长为1的正方形AA1O1O(及其内部)绕OO1旋转一周形成圆柱,如图, 长为 ,长为,其中B1与C在平面AA1O1O的同侧.
(1)求圆柱的体积与侧面积;
(2)求异面直线O1B1与OC所成的角的大小.
设f(x)=xlnx–ax2+(2a–1)x,a∈R.
(Ⅰ)令g(x)=f'(x),求g(x)的单调区间;
(Ⅱ)已知f(x)在x=1处取得极大值.求实数a的取值范围.