题目内容
13.设i为虚数单位,复数$\overline{i(1+i)}$的虚部为( )| A. | -1 | B. | 1 | C. | -i | D. | i |
分析 利用复数代数形式的乘法运算化简,在求其共轭复数得答案.
解答 解:∵i(1+i)=-1+i,
∴$\overline{i(1+i)}$=-1-i,则复数$\overline{i(1+i)}$的虚部为-1.
故选:A.
点评 本题考查复数代数形式的乘法运算,考查复数的基本概念,是基础题.
练习册系列答案
相关题目
3.已知圆的方程为x2+y2-6x=0,过点(1,2)的该圆的所有弦中,最短弦的长为( )
| A. | $\frac{1}{2}$ | B. | 1 | C. | 2 | D. | 4 |
1.过双曲线$\frac{x^2}{3}-{y^2}=1$右焦点的直线l被圆x2+(y+2)2=9截得弦长最长时,则直线l的方程为( )
| A. | x-y+2=0 | B. | x+y-2=0 | C. | x-y-2=0 | D. | x+y+2=0 |
8.为了解市民在购买食物时看营养说明与性别的关系,现在社会上随机询问了100名市民,得到如下2×2列联表:
(1)是否有95%的把握认为:“性别与读营养说明有关系”,并说明理由;
(2)把频率当概率,若从社会上的男性市民中随机抽取3位,记这3位中读营养说明的人数为ξ,求随机变量ξ的分布列和数学期望E(ξ).
参考公式和数据:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$
(1)是否有95%的把握认为:“性别与读营养说明有关系”,并说明理由;
(2)把频率当概率,若从社会上的男性市民中随机抽取3位,记这3位中读营养说明的人数为ξ,求随机变量ξ的分布列和数学期望E(ξ).
| 男性 | 女性 | 总计 | |
| 读营养说明 | 40 | 20 | 60 |
| 不读营养说明 | 20 | 20 | 40 |
| 总计 | 60 | 40 | 100 |
| P(K2≥k0) | 0.10 | 0.050 | 0.025 | 0.010 |
| k0 | 2.706 | 3.841 | 5.024 | 6.635 |
18.已知函数f(x)=|lnx|,若在区间$[\frac{1}{3},3]$内,曲线g(x)=f(x)-ax与x轴有三个不同的交点,则实数a的取值范围是( )
| A. | $[\frac{ln3}{3},\frac{1}{e})$ | B. | $[\frac{ln3}{3},\frac{1}{2e})$ | C. | $(0,\frac{1}{e})$ | D. | $(0,\frac{1}{2e})$ |