题目内容
19.已知函数f(x)=x2+4[sin(θ+$\frac{π}{3}$)]x-2,θ∈[0,2π]].(Ⅰ)若函数f(x)为偶函数,求tanθ的值;
(Ⅱ)若f(x)在[-$\sqrt{3}$,1]上是单调函数,求θ的取值范围.
分析 (Ⅰ)根据函数奇偶性的定义建立方程关系进行求解即可.
(Ⅱ)利用一元二次函数的单调性的性质进行判断即可.
解答 解:(Ⅰ)∵f(x)是偶函数,∴f(-x)=f(x),
则x2+4[sin(θ+$\frac{π}{3}$)]x-2=x2-4[sin(θ+$\frac{π}{3}$)]x-2,
则sin(θ+$\frac{π}{3}$)=0,
∵θ∈[0,2π],
∴θ+$\frac{π}{3}$=kπ,
即θ=-$\frac{π}{3}$+kπ,
∴tanθ=tan(-$\frac{π}{3}$+kπ)=-$\sqrt{3}$.
(Ⅱ)∵f(x)=x2+4[sin(θ+$\frac{π}{3}$)]x-2,θ∈[0,2π]].
∴对称轴为x=-2sin(θ+$\frac{π}{3}$),
若f(x)在[-$\sqrt{3}$,1]上是单调函数,
则-2sin(θ+$\frac{π}{3}$)≥1或-2sin(θ+$\frac{π}{3}$)≤$-\sqrt{3}$,
即sin(θ+$\frac{π}{3}$)≥$\frac{\sqrt{3}}{2}$或sin(θ+$\frac{π}{3}$)≤$-\frac{1}{2}$,
即2kπ+$\frac{π}{3}$≤θ+$\frac{π}{3}$≤2kπ+$\frac{2π}{3}$,或2kπ+$\frac{7π}{6}$≤θ+$\frac{π}{3}$≤2kπ+$\frac{11π}{6}$,k∈Z,
即2kπ+$\frac{5π}{6}$≤θ≤2kπ+$\frac{3π}{2}$,或2kπ≤θ≤2kπ+$\frac{π}{3}$,k∈Z,
∵θ∈[0,2π],
∴$\frac{5π}{6}$≤θ≤$\frac{3π}{2}$,或0≤θ≤$\frac{π}{3}$.
点评 本题主要考查函数奇偶性应用以及三角函数的恒等变换,利用条件转化为函数问题是解决本题的关键.
甲班:87、83、90、70、66、71、82、72、67、57、67、72、57、58、68、74、87、78、69、58
乙班:71、80、81、82、90、65、57、73、85、86、91、95、86、67、68、75、96、88、89、69
(Ⅰ)作出甲、乙两班学生成绩茎叶图;并求甲班数学成绩的中位数和乙班学生数学成绩的众数;
(Ⅱ)学校规定:成绩不低于80分的为优秀,请写出下面的2×2联列表,并判断有多大把握认为“成绩游戏与教学方式有关”.
| 甲班 | 乙班 | 合计 | |
| 优秀 | |||
| 不优秀 | |||
| 合计 |
| P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
| A. | (5,5) | B. | (6,4) | C. | (-1,3) | D. | (1,-3) |
| A. | n | B. | n-1 | C. | n+1 | D. | 以上都不对 |
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既充分也不必要条件 |