题目内容

19.已知双曲线方程为$\frac{x^2}{{{m^2}+4}}-\frac{y^2}{b^2}=1$,若其过焦点的最短弦长为2,则该双曲线的离心率的取值范围是(  )
A.$(1,\frac{{\sqrt{6}}}{2}]$B.$[\frac{{\sqrt{6}}}{2},+∞)$C.$(1,\frac{{\sqrt{6}}}{2})$D.$(\frac{{\sqrt{6}}}{2},+∞)$

分析 由题意,通径为$\frac{2{b}^{2}}{a}$=2,a≥2,可得b=$\sqrt{a}$,利用e=$\sqrt{1+\frac{{b}^{2}}{{a}^{2}}}$=$\sqrt{1+\frac{1}{a}}$≤$\frac{\sqrt{6}}{2}$,e>1,即可得出结论.

解答 解:由题意,$\frac{2{b}^{2}}{a}$=2,a≥2
∴b=$\sqrt{a}$,
∴e=$\sqrt{1+\frac{{b}^{2}}{{a}^{2}}}$=$\sqrt{1+\frac{1}{a}}$≤$\frac{\sqrt{6}}{2}$,
∵e>1,
∴1<e≤$\frac{\sqrt{6}}{2}$,
故选A.

点评 本题考查双曲线的方程与性质,考查学生的计算能力,比较基础.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网